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Abstract

Modeling continuous choices in heterogeneous agent models as “lotteries” over a

discretized state space is standard practice (Young, 2010), but renders the distri-

butional dynamics linear in optimal policies. We present a novel, simple method

that captures nonlinearities and solves the distributional dynamics with interpo-

lation instead of integration using the idea of an endogenous grid. Our approach

solves for a stationary equilibrium as quickly as the lottery method for a given pre-

cision, outperforms it for linear dynamics, and accommodates nonlinear dynamics

and aggregate risk. We demonstrate its efficacy by studying a model with aggregate

investment risk with a third-order perturbation solution.
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1 Introduction

A large class of heterogeneous agent models has the evolution of the distribution of agents

at its core. In this paper, we propose a novel method for implementing this evolution

numerically. Our method exploits the fact that policy functions in many such models

are monotone. This allows us to express the evolution of the distribution without relying

on either linearized mappings (Reiter, 2009; Young, 2010) or full integration (Krusell &

Smith, 1998). Instead, we extend the idea of endogenous gridpoints (Carroll, 2006) to

distributional dynamics.

We show that our distributional endogenous gridpoint method, hereafter DEGM, is as

fast and tractable as the “lottery method” proposed by Young (2010)—the standard in

the literature. We also show that our method converges faster as the number of gridpoints

increases, even when solving for a stationary equilibrium and studying linear dynamics.

Importantly, it preserves nonlinearities and is thus suitable for higher-order perturbation

solutions of macroeconomic models with heterogeneous agents.

We illustrate our method with two applications. We start with the Aiyagari (1994)

economy and document the numerical efficiency gains over the lottery method when solv-

ing for stationary distributions. Both methods converge to the same solution as the num-

ber of gridpoints increases, but DEGM reaches this limit an order of magnitude faster.

Our method works directly on the cumulative distribution function, parsimoniously cap-

turing its curvature through shape preserving interpolation. Importantly, updating the

distribution function is not costly because the novel endogenous gridpoint approach works

without integration.

We then propose a Krusell and Smith (1998) model with investment risk (depreciation

shocks) as a new baseline model to study aggregate nonlinearities with household het-

erogeneity. This overcomes the approximate linearity in aggregate capital of the original

Krusell and Smith (1998) model, while still being as parsimonious. We extend higher-

order perturbation techniques to heterogeneous agent models, following Andreasen et al.

(2018) and Levintal (2017). We solve our model up to third order and study asymmetric

investment risk calibrated as in Barro (2006). The third-order solution becomes possi-
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ble by combining the fast convergence of DEGM with state space reduction techniques

developed in Bayer and Luetticke (2020) and Bayer et al. (2024). For the second-order

solution, we also solve the unreduced model and show that the reduction techniques yield

identical results.

For first-order perturbations, DEGM gives the same solution as the lottery method in

the limit, but again converges to the true impulse responses faster in terms of the number

of gridpoints. However, there is a significant difference for higher-order perturbations,

where the lottery method does not capture all nonlinear effects, as already argued by

Bhandari et al. (2023). The lottery method overstates, in particular, the distributional

responses to shocks. At the same time, it understates the average long-run increase in

wealth inequality as a consequence of the presence of investment risk. Using a third-

order perturbation solution with DEGM, we find that aggregate investment risk lowers

the capital stock by 5 to 11 basis points and increases wealth inequality by up to 11 basis

points, depending on the calibration of idiosyncratic income risk. Aggregate investment

risk increases inequality by reducing the incentive to save, especially for poor households.

The lottery method, by ignoring nonlinear terms in the distributional dynamics, predicts

lower wealth inequality than DEGM in the presence of investment risk.

Similar to Angeletos (2007), the introduction of risky returns to savings reduces ag-

gregate savings through a negative substitution effect that dominates over the income

effect for the majority of households. Angeletos discusses these channels, but in a styl-

ized model where all agents save the same proportion of their lifetime wealth but have

different ex-post returns, so that the wealth distribution becomes non-stationary.1 Since

investment risk is not idiosyncratic in our model, the model does not generate enough

inequality within the top 1%. However, we find that adding aggregate investment risk to

the original Aiyagari economy does increase wealth inequality and in particular wealth

holdings at the very top.

This finding complements recent work showing how the expectation of lower as-

1Benhabib et al. (2024) also study the effects of investment risk in a model with heterogeneous agents.
By making a distributional assumption about idiosyncratic investment risk, their model generates a
wealth distribution with a realistic (Pareto-like) right tail.
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set returns can increase wealth inequality through heterogeneous household portfolios

(Fagereng et al., 2020; Fernández-Villaverde & Levintal, 2024; Gomez, 2024). While

these studies emphasize the role of “passive” saving through rising asset prices, we show

that aggregate uncertainty increases wealth inequality through “active” saving by the

wealthy, as left-skewed investment risk has a stronger income effect for them.

Our method is directly implementable in the established sequence and state-space

approaches for solving heterogeneous agent models with aggregate shocks (Auclert et

al., 2021; Bayer et al., 2024). The idea of approximating the cumulative distribution

function is not entirely new and can be found in Ŕıos-Rull (1997), Heer and Maussner

(2009), and also in the special issue Den Haan et al. (2010). Our reformulation with an

endogenous grid approach with nonlinear interpolation makes it differentiable, tractable

and fast. The parsimonious representation of nonlinear distribution dynamics is key for

higher-order perturbations.

The rest of the paper is organized as follows: Section 2 describes the distributional

dynamics in terms of a difference equation of the distribution and policy functions, and

presents our proposed method for solving this equation. Section 3 applies the method

to the solution of an Aiyagari (1994) economy. Section 4 then uses an up to third order

perturbation solution to the dynamic version of this economy with capital depreciation

shocks as the source of aggregate risk. Section 5 concludes.

2 Problem and Method

Consider an economy in discrete time with a distribution of agents (of mass 1) over two

variables a and y. We assume that ln(y) follows a stationary AR(1) process with normally

distributed innovations ϵ and persistence 0 < ρ < 1:

ln(yt+1) = ρ ln(yt) + ϵt+1, ϵt+1 ∼ N(0, σ2
ϵ ). (1)

The continuous endogenous variable a is determined by the agent’s policy function

a∗(a, y), which we assume to be strictly monotone in a (or composed of a constant part and

3



strictly monotone part) and, when discussing perturbation solutions, that is continuously

differentiable both in a and y up to at least the order of perturbation.2 The cumulative

joint distribution in a and y at time t is given by Ft(a, y) := P (xt ≤ a, zt ≤ y). We

denote ft(a | y) = ft(a, y)/dFt(y) as the conditional density of non-mass point a for a

given income y.3 Because the process for y is exogenous and stationary, we focus on the

case where the marginal density in y is the time-constant stationary one, dFt(y) = dF (y),

which we know in closed form.

2.1 Distributional Dynamics in Discrete Time

The evolution of the distribution F is then given by the time-discrete Kolmogorov forward

equation (making use of x and z′ being independent):

Ft+1(a
′, y′) =

∫
z′≤y′

∫
z

∫
{x|a′≥a∗(x,z)}

ft(x | z) ϕ(z, z′)dx dz dz′, (2)

where ϕ(z, z′) is the density of a transition from today’s income, z, to tomorrow’s income

z′, so that π(z | z′) := ϕ(z,z′)
dF (z′)

is the conditional density of having been at z in t conditional

on being in t+ 1 at z′.

A brute-force approach to solving the equation for Ft+1 would therefore require an

integral approximation. This is computationally expensive. Originally, economists often

used Monte Carlo methods to solve the Equation (2). To avoid this, Young (2010) suggests

replacing the continuous distribution in a and y with a discrete counterpart. One defines

a grid for a and a grid for y and represents the y-process by a discrete Markov chain and

replaces the policy function a∗(a, y) by lotteries over the gridpoints closest to a∗(a, y).

Therefore, this method is commonly known as the “lottery” method.4 We denote the

discrete probabilities from this “lottery” method (henceforth: LM ) by the vector f̂(a, y).

The simultaneous transitions along the a and y dimensions can then be summarized by a

2This is the standard case in many economic models, see Carroll (2006).
3We prove in Appendix C.3 that the distribution in a is indeed continuous above the borrowing

constraint.
4Sometimes this is also referred to as “histogram method”. We will use the latter term, however, for

a related but not identical interpretation of the distribution as piece-wise linear interpolants over bins
with transitions being uniformly distributed from one bin to the other, see Reiter (2009).
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single transition matrix A∗. This gives the discretized and stacked Kolmogorov forward

equation:

f̂t+1 = f̂tA
∗. (3)

While this allows to calculate f̂t+1 very quickly, it not only creates an approximation error

due to discretizing continuous densities, but also forces the Equation (3) to be linear in

the optimal policies a∗.

2.2 The Endogenous Gridpoint Method for Distributions (DEGM)

Instead, we propose to use an endogenous gridpoint method analogous to the one proposed

by Carroll (2006). To do so, we write the problem in terms of the distribution in a

conditional on y, technically Ft(a | y) =
(

∂
∂y
Ft(a, y)

)
/dFt(y), and divide each period into

two sub-periods, a first one related to asset choices and a second one related to income

changes. Because y is exogenous and strictly stationary, we can assume its marginal

distribution to be constant over time and equal to its ergodic distribution dFt(y) = dF (y).

This renders working with the conditional distribution or the joint distribution equivalent

in the following, but also renders the former easier to handle. Concretely, we obtain the

split in sub-periods by defining the distribution at the end of period t, after asset choices

but before income transitions, as

F̃t(a
′ | y) :=

∫
{x|a∗(x,y)≤a′} ft(x | y)dx, (4)

such that we obtain the asset distribution at the beginning of period t + 1, given new

income level y′, as

Ft+1(a
′ | y′) =

∫
z
F̃t(a

′ | z)π(z | y′)dz. (5)

Importantly, there are standard ways, such as Tauchen (1986), to find optimal quadrature

weights to calculate the latter integral in form of a discretization of the y process by
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creating a partitioning {Y1, . . .Yny} and evaluating F̃ at the conditional expectations

Yk := E(y | y ∈ Yk). We can then replace the conditional transition densities by discrete

probability counterparts:

Ft+1(a
′ | Yk) ≈

∑ny

j=1 F̃t(a
′ | Yj)Πj,k; Πj,k := P (yt ∈ Yj | yt+1 ∈ Yk). (6)

These discretizations converge to the theoretical integral in (5) as ny increases.

In addition to our partitioning in y, we now specify grids {Ai}i=1...na for a and cal-

culate the associated policies A∗
i,j := a∗ (Ai,Yj). With these objects at hand, we first

consider the case where a∗(·, y) is strictly monotone everywhere. This assumption allows

us to simplify, for the endogenous gridpoints, A∗
i,j, the set over which we integrate to

{x|a∗(x,Yj) ≤ A∗
i,j} = {x|a∗(x,Yj) ≤ a∗ (Ai,Yj)} = {x|x ≤ Ai}, where the last equation

results from the monotonicity of a∗. This allows us to move from Ft to F̃t without explicit

integration for these endogenous gridpoints as

F̃t(A∗
i,j | Yj) =

∫
{x|a∗(x,Yj)≤A∗

i,j}
ft(x | Yj)dx =

∫
x≤Ai

ft(x | Yj)dx = Ft(Ai | Yj).

Therefore, the set of tuples
{(

A∗
i,j, Ft(Ai | Yj)

)}
i=1...na

is on the graph of F̃t(· | Yj).

Consequently, we can construct an interpolant ˆ̃Ft for each Yj, since {A∗
i,j}i=1...ny is an

ordered set, as a∗ is strictly monotone in a. Replacing F̃t by
ˆ̃Ft in (5), as well as replacing

the integration by the quadrature over the finite income grid, then allows to evaluate

Ft+1 at any a′ without integration:

Ft+1(a
′ | Yk) ≈

∑
j

ˆ̃Ft(a
′ | Yj) Πj,k. (7)

Finally, the definition of a cumulative distribution function implies two extrapolation

rules. First, ˆ̃Ft(a
′ | Yj) is set to zero for any a′ < mini

{
A∗

i,j

}
. These are future endoge-

nous states that are lower than the smallest optimal policy and hence are never reached.

Second, ˆ̃Ft(a
′ | Yj) is set to lima→∞ Ft(a | Yj) = 1 for all a′ > maxi

{
A∗

i,j

}
. The largest

optimal policy is lower than these future endogenous states and hence the probability to
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observe an agent with a lower than this endogenous state, given income Yj, is one.

Handling the Borrowing Constraint. When a∗ is a savings function, however,

it is typically only weakly monotone. It has a constant initial part at the borrowing

constraint and is strictly monotone, for a given Yj, for a greater than some threshold of

asset holdings aj. Our method can be easily adapted to account for this. Simply make

the grid Ai start at aj, the EGM-solution (Carroll, 2006) corresponding to the borrowing

constraint, to restore strict monotonicity. Because of weak monotonicity, and because we

are working with cumulative distributions, evaluating Ft(aj,Yj) gives the mass point at

the borrowing constraint.

Another concern stemming from a mass point at the borrowing constraint is that such

mass points can propagate through the distribution, especially when using any discrete

approximation of the income process. Although there exist examples of policy functions

that yield a distribution characterized by a finite number of mass points (see, e.g., Challe

and Ragot (2016)), Appendix C demonstrates that this behavior is not generic. In fact,

the discrete approximation of the income process produces a distribution function that

is never truly “flat” — the set of points with nonzero mass is dense. The distribution

function may still exhibit sharp increases — echoes of the borrowing constraint — which,

however, diminish as the number of income states increases. In this light, a smooth

interpolant can be expected to approximate the true distribution more accurately than

a gridded step function; even when such echoes occur, a sufficiently flexible smooth

interpolant will capture the “jump” effectively.

For a continuous income process, these echoes will be completely smoothed, and the

distribution function will inherit differentiability from the differentiability of the policy

function a∗. Importantly, this implies that the constructed interpolant from a finite

set of income states approximates the wealth distribution well as we let the number of

income states go to infinity, so that the quadrature approximations Π to the integrals

converge. In practice, this convergence in income gridpoints is fast, and as few as ten

income gridpoints smooth the echoes of mass at the borrowing constraint.
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Figure 1: Illustration of DEGM with an interpolation over an endogenous grid
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(a) Beginning of period CDF Ft(1 : 3 | Yj) (b) Graph
{(

A∗
1:3,j,Ft(1 : 3 | Yj)

)}

a(i=1) a(i=2) a(i=3)

F̃(a)

a*(1) a*(2) a*(3) a(i=1) a(i=2) a(i=3)

F̃(a)

a*(1) a*(2) a*(3)

(c) Construction of interpolant ˆ̃Ft(· | Yj) (d) Evaluation of interpolant ˆ̃Ft(1 : 3 | Yj)

2.3 Numerical Implementation of DEGM

To provide a practical guide to implementation, we conclude with a summary of the

proposed algorithm, assuming that the dynamic programming problem leading to the

policy function is solved w.l.o.g. on the grid {Ai}. This means that
{
A∗

i,j

}
is readily

available as a discretized representation of the policy function.

Algorithm 1. Start with the cumulative joint distribution (in a) at time t given by

Ft(a | y) that is discretized on the grids {Ai}, {Yj}, see Figure 1 (a). The following

assumes the values of this are stored in the matrix Ft = [Ft(Ai | Yj)]
j
i .

1. For each exogenous state with index j, y = Yj, create the interpolant ˆ̃F j
t (a).

(a) Find the largest endogenous aj s.t. a∗(aj|y) = a0. This means, find the last

asset state for which the policy a∗ is a constant (based on the end-of-period

marginal value of a0 and the budget constraint as in Carroll (2006)’s EGM).
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(b) Define

Āi,j =


{
aj
}
∪
{
a ∈ Ai : a > aj

}
if aj > a0

Ai else

and the set of corresponding choices Ā∗
i,j

(c) Find the set of according points on the graph of F̃ j
t : G :=

{(
Ā∗

i,j,Ft(i, j)
)}

,

see Figure 1 (b).

(d) Create an interpolant ˆ̃F j
t based on the set G, see Figure 1 (c).

2. Loop through all i, j to evaluate the interpolant for each Ai from the fixed grid

{Ai} and each Yj ∈ {Yj} to calculate:

ˆ̃Ft(i, j) =


0 if Ai < min

{
Āi,j

}
Ft(end, j) if Ai > max

{
Āi,j

}
ˆ̃F j
t (Ai) else

and collect this in a matrix ˆ̃Ft. This yields the CDF in a on the fixed grid {Ai}

prior to the exogenous Markov transitions, see Figure 1 (d).

3. Apply the exogenous Markov transition matrix Π to obtain Ft+1 as:

Ft+1 =
ˆ̃FtΠ

′

Practical implementation requires the choice of an interpolation routine. Since cumu-

lative distribution functions are monotone, the interpolant should preserve this property.

Both linear interpolation and piecewise cubic hermitian splines do. However, the linear in-

terpolant does not preserve differentiability everywhere. Note that the linear interpolant

is neither equivalent to the histogram nor to the lottery method, since we interpolate the

CDF with optimal policy choices being the interpolation nodes.5

5See Appendix A.1 for details.
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2.4 Nonlinear Distributional Dynamics

Bhandari et al. (2023) have highlighted the fact that LM fails to fully capture the non-

linear dynamics of the distribution. Returning to Equation (4), the nonlinear effects of

the distribution ft on its transition dynamics derive entirely from its effect on the policy

function a∗. Holding the policy function constant, the transition is a linear operator.6

We can thus sufficiently characterize the missing nonlinearities of the LM by analyzing

the effects of changes in the optimal policy function. Let them be caused by some

generic perturbation ξt, for example, aggregate shocks or changes in the mean of the

distribution. The second-order derivative of the transition matrix A∗ of the Kolmogorov

forward equation to such a shock is generally composed of two terms and is given by

∂A∗(k, l)

∂a∗k

∂2a∗k
∂ξ2t

+
∂2A∗(k, l)

∂a∗2k

[
∂a∗k
∂ξt

]2
, (8)

where a∗k denotes the optimal policy at wealth level Ak. The first effect captures the

direct nonlinearity of the policy function. The second effect reflects that the Kolmogorov

forward equation is in principle nonlinear in policies. However, LM constructs A∗ as

(ignoring the exogenous state transitions for simplicity of notation)

A∗(k, l) =


1− a∗k−Al

Al+1−Al
if a∗k ∈ [Al,Al+1)

a∗k−Al−1

Al−Al−1
if a∗k ∈ [Al−1,Al)

0 else,

(9)

which is linear in a∗. Therefore ∂2

∂a∗2k
A∗(k, l) = 0. In Appendix A, we extend this analysis

to the third-order derivative of Equation (4).

Our method, on the other hand, can capture all nonlinearities up to the order of

the splines used to interpolate the CDF. Again, the second-order derivative, now of our

6The effect of the distribution on the policy function works through a market clearing condition,
where higher aggregate demand for an asset, say, increases the market price.
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interpolant ˆ̃F j
t (Ai), has the general form:

∂2 ˆ̃Ft(i, j)

∂ξ2t
=

∂ ˆ̃Ft(i, j)

∂A∗
.j

∂2A∗
.j

∂ξ2t
+

[
∂A∗

.j

∂ξt

]′
∂2 ˆ̃Ft(i, j)

∂A∗
.j
2

[
∂A∗

.j

∂ξt

]
, (10)

where, unlike (8), the second term is nonzero because A∗
.j are the vectors of the interpola-

tion nodes (and the derivatives are vector-valued). Therefore, the Hessian ∂2 ˆ̃Ft(i,j)

∂A∗
.j

2 is gen-

erally nonzero. As also described in Bhandari et al. (2023), the second term in Equation

(10) reflects second-order responses of the distributional dynamics to first-order changes

in the optimal policy. What is more, if the continuous distribution has curvature at

these pre-images, A∗
.j, approximation of ∂2 ˆ̃Ft(i,j)

∂A∗
.j

2 requires a shape-preserving interpolation

method, as illustrated in Figure 1 using cubic splines.7

3 Solving for Stationary Distributions

Our first application is the solution of an Aiyagari (1994) economy, where Equation (2)

takes the special form of Ft = F ∀t as an equilibrium condition. Specifically, we consider

an economy with a continuum of households facing idiosyncratic risk in their human

capital, ht, which they rent out to firms at the wage rate, wt. Households can self-insure

by accumulating non-negative amounts of capital, kt, which they rent out to firms at

rate rt. Capital depreciates at the rate δt. Human capital evolves according to a log-

normal AR-1 process as in (1). We discretize this process in order to obtain quadrature

weights for the transitions in form of the matrix Π using the Tauchen (1986) algorithm.

Households enjoy utility from consumption, ct, and solve the dynamic program:

max
{ct,kt+1}∞t=0

E
∞∑
t=0

βtu(ct) (11)

s.t. ct + kt+1 = (1 + rt − δt) kt + htwt (12)

kt+1 ≥ 0. (13)

7Appendix A.3 shows that the continuous limit counterpart to ∂2 ˆ̃Ft(i,j)
∂A∗

.j
2 is typically non-zero.
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Table 1: Calibration

Parameters Value Parameters Value

Calibration with persistent human capital process

β Discount factor 0.98 σϵ Std. of log-income shocks 0.14
γ Rel. risk aversion 1.00 ρ Persistence of log-income 0.98
α Capital share 0.32 δ Depreciation rate 0.02

Implied wealth distribution

Mass at k = 0 0.04 Wealth Gini 0.66

Calibration with more transitory human capital process

β Discount factor 0.99 σϵ Std. of log-income shocks 0.18
γ Rel. risk aversion 1.00 ρ Persistence of log-income 0.88
α Capital share 0.32 δ Depreciation rate 0.02

Implied wealth distribution

Mass at k = 0 0.01 Wealth Gini 0.42

Grid size used for calibration

nk Gridpoints for k 160 nh Gridpoints for h 20

The wage and capital rates are given by the marginal products of labor and capital,

respectively, where the production function is given by

Yt = Kα
t N

1−α, (14)

where N is the total amount of human capital supplied by households.

We seek an equilibrium in which prices are constant such that households form optimal

policies given r, w, δ. These optimal policies are continuous choices of kt+1. They depend

on the continuous states kt (endogenous) and ht (exogenous). It is easy to show that for

strictly concave felicity functions u(c) the optimal policies are weakly monotone in kt and

strictly monotone outside the borrowing constraint. The problem thus fits the setup of

Section 2.

We use this workhorse model as a laboratory to present our novel method and compare

it to the widely used lottery method (LM ). To do so, we follow in principle the calibration

idea of Den Haan et al. (2010), see Table 1, but deviate by having a continuous human

capital process with sufficient persistence to generate a significant fraction of credit-
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constrained households. We also consider a version with larger income shocks and lower

persistence, closer to the original Den Haan et al. (2010) setup. Conceptually, DEGM

involves iterating the cumulative distribution function to find the stationary distribution.8

We solve the model for nk = 160 gridpoints in capital k and nh = 20 gridpoints in human

capital h.9 As a baseline, we use our novel method to find the equilibrium. Going beyond

160 gridpoints for capital and 20 for income had no significant effect on the equilibrium

(using the DEGM method), so we consider the distribution at nk = 160 and up to nh = 20

to be the “true” distribution.10

We perform two exercises. First, we isolate the quality of the approximation to the

distribution by keeping prices and optimal policies fixed at the benchmark solution for

the stationary equilibrium, that is, we use the DEGM solution with nk = 160. We

then select a subset of gridpoints for the sparser grid and use the associated policies

to iterate the distribution to convergence for both the established LM and our new

DEGM.11 Second, we solve for the stationary equilibrium, including prices and policies,

which more closely resembles the actual use case. LM finds the stationary distribution

via eigendecomposition, while our method uses iteration. For the first exercise, we use

the uniform distribution as a starting guess, which we update for the second exercise in

each iteration on the equilibrium prices with the last converged distribution.

Table 2 shows the distance of two moments of the stationary distribution, average

capital holdings and the Gini coefficient of capital holdings, for nk = 40, 80, and 160

gridpoints in the asset dimension relative to the baseline solution using DEGM with

160 gridpoints for capital. All deviations are expressed by varying the asset grid but

keeping the income grid fixed. For the income dimension, we consider three variants with

nh = 5, 10, and 20 gridpoints.

Panel A does this for the first exercise with constant prices and policies. Panel B

8We compute the aggregate capital stock as E[X] = b · F (b)− a · F (a)−
∫ b

a
F (x) dx.

9The grid is defined as ki = kmin + u2
i with ui uniformly distributed on [0,

√
200]

10Beyond 160 gridpoints, the DEGM solution no longer changes. For LM, convergence is achieved
at about 320 gridpoints. Then there is no difference between the two methods in the solution of the
stationary equilibrium. Also, going beyond 20 gridpoints for human capital does not significantly change
the results.

11We use piecewise cubic Hermite splines to interpolate the cumulative distribution function.
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Table 2: Convergence of stationary equilibria under LM and DEGM in nh, nk

LM DEGM

nh

nk 40 80 160 40 80

Panel A: Stationary distribution [relative deviations in percent]

Capital stock 5 1.72 0.56 0.12 0.09 0.03
10 1.21 0.43 0.10 0.12 0.03
20 0.85 0.32 0.09 0.17 0.03

Wealth gini 5 2.24 0.78 0.15 0.00 -0.01
10 1.30 0.45 0.11 0.03 0.00
20 0.84 0.30 0.08 -0.02 0.00

Panel B: Stationary equilibrium [relative deviations in percent]

Capital stock 5 0.31 0.11 0.03 -0.03 0.00
10 0.20 0.07 0.02 -0.01 0.00
20 0.12 0.05 0.02 0.01 0.00

Wealth gini 5 2.66 0.83 0.17 0.20 0.02
10 1.60 0.51 0.13 0.17 0.02
20 1.09 0.36 0.09 0.11 0.02

Panel C: Computation times [in s]

Time (s) 5 0.10 0.15 0.24 0.29 0.43
10 0.18 0.26 0.45 0.41 0.65
20 0.35 0.54 1.08 0.82 1.35

Notes : For each row, values represent percent deviations of the solutions with nk grid-
points to the reference solution (DEGM with nk = 160). For LM we use discrete aggre-
gation methods, while we use continuous integration methods for DEGM. Values for the
“persistent” income calibration from Table 1.
Panel A: Calculating stationary distribution using policies from the reference solution.
Panel B: Solving the stationary equilibrium including prices and policies.
Panel C: Time in seconds for solutions of Panel B. CPU with 16-cores, 3.3 GHz.

compares the two methods for the second stationary equilibrium exercise. Regardless of

the size of the income grid nh, we find that our method converges to the “true” distribu-

tion much faster, especially for cross-sectional moments.12 For a given number of asset

gridpoints, LM is faster in terms of computational time, mainly because it does not re-

quire iterations when updating the distribution. However, for a given accuracy (nk = 40

12This mirrors the findings in Den Haan et al. (2010), which compares the approximation of the
Kolmogorov forward equation by Monte Carlo simulation, the lottery method, or direct integration
using a spline for the cumulative distribution function.
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DEGM ≈ nk = 160 LM ), our method is faster in solving for the stationary equilibrium

(Panel C). The faster convergence reflects the fact that the distribution function is typ-

ically nowhere flat and the set of asset states that can be reached is dense, as discussed

in Appendix C. LM approximates this necessarily by a step function for the distribution

and for a coarse grid this approximation lacks precision.

4 Higher-Order Perturbations of Distributional Dy-

namics

Our second application is a setup with aggregate risk. As explained in Section 2, our

method is able to capture nonlinearities in such setups. Specifically, we study an up

to third-order perturbation solution of the Aiyagari model outlined above with capital

depreciation shocks. Since we use third-order splines to interpolate the distribution, our

method captures all nonlinear effects in both the distribution and the policy function.

To do this, we extend the state-space perturbation techniques for heterogeneous agent

models to higher orders. Following Reiter (2009), we include the distribution and value

functions in the state space. We then define a nonlinear differential equation on these

objects, see Appendix B. The higher-order perturbation solution of this difference equa-

tion is then the same as for any differential equation reflecting a state-space system.

Therefore, we can rely on established methods and solve the system with the algorithms

developed by Andreasen et al. (2018) and Levintal (2017).13 We also repeat the details

of Levintal (2017)’s algorithm applied to heterogeneous agent models in Appendix B.

In addition, we show for the second-order perturbation that the Bayer and Luetticke

(2020) reduction and its refinement in Bayer et al. (2024) yield the same results as solv-

ing the unreduced Reiter (2009) system. This reduces the state space of the model by

writing the distribution in the form of a copula and marginals, and representing the value

functions as sparse combinations of basis functions. For the third-order perturbation, we

then exploit the sparseness of the reduced system. Currently, it is not feasible to solve

13The calculation of the first moments of the higher-order approximations using the Andreasen et al.
(2018) method is equivalent to the method developed earlier by Rudebusch and Swanson (2012).
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the full system beyond second order due to the increased memory requirements.

Solving the model up to third order allows us to implement asymmetric shocks. We

follow Levintal in approximating the binomial distribution of a depreciation shock with

a continuous distribution that has the same higher-order moments. Agents internalize

the positive third moment of the shock, which acts as an investment risk. In particular,

capital depreciation δt deviates from its steady-state value by following the process:

δt = δ + νt, νt ∼ F ν(0, σδ, τδ), (15)

where σ2
δ and τ 3δ are the second and third moments of the depreciation shock distribution,

respectively. In our calibration, σδ = 0.005 and τδ = 0.012, which corresponds to a 0.4%

chance that a disaster destroys 7.5% of the capital stock in a given period (quarter) and

causes a 10% drop in annual GDP, consistent with the evidence in Barro (2006).

We propose this Krusell and Smith (1998)-style model with investment risk as a base-

line model for studying aggregate nonlinearities with household heterogeneity. It over-

comes the approximate linearity in aggregate capital of the original Krusell and Smith

(1998) model while being equally parsimonious. Figure 2 compares the impulse responses

to a one-time 7.5% destruction of the capital stock using DEGM to compute the dynam-

ics with first- and second-order perturbation solutions. The first-order solution slightly

understates the decline in aggregate capital and also the decline in the Gini coefficient of

wealth in response to the capital depreciation shock. The difference in the second-order

solution across methods is small for the response of the aggregate capital stock, but sig-

nificant for the response of the Gini coefficient. This is true for both income processes

considered. Taken together, this suggests that the distributional dynamics in this model

are nonlinear with respect to aggregate shocks, but that the feedback from inequality to

aggregates and equilibrium prices is modest.

Table 3 compares the solutions (without state-space reduction) for different grid sizes.

LM and DEGM converge to the same first-order perturbation solution, just as they con-

verge to the same stationary equilibrium (consistent with Bhandari et al., 2023, showing

that LM has no bias up to first-order perturbations). In terms of IRFs of aggregates,
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Figure 2: Impulse responses to a capital depreciation shock
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Notes: Impulse responses of capital (left panels) and wealth Gini (right panels) to the shock

ν1 = 7.5 p.p. from first-order (dotted black) and second-order (dashed blue) solutions using

DEGM, and from second-order solution using LM (dash-dotted red), evaluated at the non-

stochastic steady state (ny = 10, nk = 160). Top row: persistent calibration. Bottom row:

transitory calibration. Y axis: Percent deviation from the non-stochastic steady state. X-axis:

Quarter.

convergence is fast in nk for both methods. In terms of the first-order dynamics of the

wealth distribution, we find no significant differences in the nk = 40 solution with DEGM

to the 160-grid-point benchmark. For LM, the dynamics of the wealth distribution, in

terms of IRFs of the wealth Gini, become the same as in our baseline only when we use

nk = 160 gridpoints. In other words, DEGM converges to the true solution much faster
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Table 3: Convergence of 1st- and 2nd-order perturbation for LM and DEGM

LM DEGM

nh

nk 40 80 160 40 80

Panel A: IRF statistic as in Bayer et al. (2024)

Capital stock (FO) 5 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00

Capital stock (SO) 5 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00

Wealth Gini (FO) 5 0.89 0.99 1.00 1.00 1.00
10 0.97 1.00 1.00 1.00 1.00

Wealth Gini (SO) 5 0.52 0.37 0.23 0.99 1.00
10 0.91 0.85 0.78 1.00 1.00

Panel B: Second-order moments [relative deviations in basis points]

Capital stock 5 -0.47 -0.46 -0.46 -0.09 -0.03
10 -1.06 -0.77 1.36 -0.94 -0.05

Wealth Gini 5 -3.94 -4.18 -4.37 0.50 0.13
10 -0.53 -1.32 -8.66 2.32 -0.24

Notes: In each row, the values represent the basis point deviations of the nk gridpoints solutions
from the reference (DEGM with nk = 160). Parameters of the “persistent” calibration, Table
1.
Panel A shows the R2 like statistics from Bayer et al. (2024) for an impulse response following a
7.5 p.p. shock to δ (over 100 periods) with a first order (FO) and second order (SO) perturbation

solution. The R2-like statistic is 1−
∑H

h=1

(IRFDEGM,nk=160,nh
(h)−IRFmethod,nk,nh

(h))2∑H
h=1 IRFDEGM,nk=160,nh

(h)2
.

Panel B shows the ergodic moment solving the model with a second order perturbation. The
deviation shown is the difference in percentage point deviation from each steady state over the
percentage point deviation in the baseline solution (DEGM, nk = 160). The aggregates under
LM are derived using discrete aggregation methods, while continuous integration methods are
used for DEGM.

for the first-order solution than LM. For the second-order solution, as expected, we find

no convergence of the LM to the DEGM benchmark solution, neither in terms of ergodic

means nor in terms of distributional IRFs.

The computing time (not reported) is now nearly identical for both methods for

the same number of gridpoints. Both methods require one iteration of the Kolmogorov

forward equation when solving for the perturbation solution, and these differ slightly,

but compared to the total computational cost of solving the difference equation, this one

iteration has a negligible computational cost so that variations therein are irrelevant.

This gives DEGM a clear advantage in solving for aggregate dynamics over LM, because
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Table 4: Comparison of second-order solution with different state-space reductions

Persistent Transitory

Reduction None Copula Copula Copula None Copula Copula Copula
+DCT +DCT +DCT +DCT

+Factor +Factor

Panel A: Dimensions

States 402 213 213 111 402 213 213 111
Controls 412 412 98 98 412 412 95 95
Total 814 625 311 209 814 625 308 206

Panel B: IRF statistic as in Bayer et al. (2024)

Capital stock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wealth Gini 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C: Second-order moments [levels]

Capital stock 25.54 25.54 25.54 25.54 25.29 25.29 25.29 25.29
Wealth Gini 0.61 0.61 0.61 0.61 0.43 0.43 0.43 0.43

Notes: “None” shows the results without reduction, “Copula” reduces the states for the dis-
tribution function, “Copula + DCT” additionally reduces the controls for the value function
using the steady-state reduction approach of Bayer and Luetticke (2020), “Copula + DCT +
Factor” derives a factor representation of the copula function from the first-order solution as in
Bayer et al. (2024) and further reduces the dimensionality of the sparse set of basis functions
to represent the copula, see Appendix B. The full state space refers to nk = 40, ny = 10 plus
aggregate states and controls.
Panel A shows the number of states and controls that enter the difference equation represent-
ing the macroeconomic model and hence its dimensionality.
Panel B shows the R2 like statistics from Bayer et al. (2024) for an impulse responses following
a 7.5 p.p. shock to δ (over 100 periods) with second-order (SO) perturbation solution. The R2

like statistics is 1−
∑H

h=1
(IRFFull(h)−IRFReduced(h))

2∑H
h=1 IRFFull(h)

2 .

Panel C shows ergodic moments in levels for the second-order solution.

it requires less gridpoints for the same precision and computing time increases sharply

with the number of gridpoints.

All of the above results do not use dimensionality reduction. Next, we check whether

the Bayer and Luetticke (2020) method, which reduces the dimensionality of the dif-

ference equation, can be extended to higher-order perturbations. The method replaces

the distribution function by a copula and marginals, and considers deviations from the

steady state in copula and value functions only on a coarse grid / based on discrete

cosine transformations with linear interpolations in between. The extension to higher-

order perturbations and the use of DEGM require that the linear interpolants used by

Bayer and Luetticke (2020) to represent copulas and value functions are also replaced by
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spline interpolation. Table 4 evaluates the quality of the approximation introduced by

the reduction step. We compare four variants. First, the no-reduction version (“None”),

which defines both the distribution and the value functions on the full Cartesian product

of the income and wealth grids.14 Second, a version that reduces only the distribution

function by writing it in terms of marginal distributions (defined on the full income and

wealth grids) and a copula defined on a coarse wealth percentile grid. Third, we also use

the DCT method of Bayer and Luetticke (2020) to reduce the number of controls rep-

resenting the value function. Fourth, we apply the refinement developed in Bayer et al.

(2024). This solves the model first at first order and finds a factor representation of the

copula function based on its variance-covariance matrix obtained under the first-order

representation.15

Panel A of Table 4 lists the number of states and controls, and hence the dimensional-

ity, of the difference equation describing the macroeconomic model, see Appendix B. The

maximum reduction removes 75% of all states and controls. This has no visible effect

on the second-order IRFs, Panel B. Also, the ergodic moments hardly change, Panel C.

The quality of the reduction is independent of whether the income process is persistent

or transitory. This is an important result because the number of derivatives to compute,

and hence the size of the matrices to store, scales with the number of states and controls

to the power of the order of the perturbation solution plus one (quadratic for first order,

cubic for second order, etc.).

For this reason, a third-order solution to the full model is not feasible on a machine

with less than 20 terabytes of memory.16 However, the strong reduction allows us to solve

the reduced system at third order (still requiring almost 2 terabytes of memory). We use

the fact that the reduction is practically lossless at the second order as a heuristic to

14In practice, since we use an EGM to solve for optimal policies, we write the difference equation in
terms of policy functions instead of value functions.

15This requires in practice a sufficiently rich set of shocks such that all prices that vary in the higher-
order solution are also varying in the first-order solution. Here we achieve this by having TFP and also
time-preference shocks that drive a wedge between the interest rate and the ratio of expected marginal
utilities.

16We estimate this memory requirement by extrapolating the relationship between system size and
memory requirements for smaller models. We predict that 20 terabytes of memory will be required for
the third-order solution of the full model at the lowest resolution we consider, nk = 40, ny = 5.
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Table 5: Ergodic moments under second- and third-order solution with investment risk

Persistent Transitory

Variable LM DEGM LM DEGM

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Panel A: Second-order solution [relative deviations in basis points]

Output -2.7 (60.5) -2.7 (62.6) -3.1 (62.8) -2.9 (63.5)
Capital
stock

-8.4 (189.0) -8.4 (195.6) -9.7 (196.2) -9.2 (198.3)

Wealth Gini -2.6 (19.0) 0.6 (15.3) -18.2 (76.4) 1.1 (55.0)

Panel B: Third-order solution [relative deviations in basis points]

Output -3.6 (-) -1.5 (-) 4.8 (-) -3.7 (-)
Capital
stock

-11.2 (-) -4.7 (-) 15.0 (-) -11.4 (-)

Wealth Gini 2.0 (-) 10.7 (-) -149.7 (-) 2.1 (-)

Notes: nk = 40, ny = 10. Means and standard deviations (in brackets) across parameteriza-

tion and methods are in basis point deviation from non-stochastic steady state. Moments are

from closed-form solutions for pruned model dynamics (Andreasen et al., 2018). No standard

deviations are reported for third-order perturbations because of memory requirements. Capital

depreciation shock with σδ = 0.5%, τδ = 1.2%.

expect a reasonable quality of approximation also at the third order.

Higher-order solutions not only provide a better approximation of the dynamics, but

also, importantly, capture the response of households to aggregate risk. Table 5 docu-

ments how the ergodic distribution with aggregate risk differs from the stationary equilib-

rium without aggregate risk. Aggregate risk here refers to investment risk. The top panel

shows the change for a second-order perturbation, the bottom panel for a third-order per-

turbation. Appendix A discusses that the third-order solution captures the effect of the

skewed distribution of aggregate shocks, while the second-order solution captures only

the effect of the variance. As in Angeletos (2007), we find that aggregate investment risk

reduces the aggregate capital stock because for most households the substitution effect is

stronger than the income effect. For the second-order perturbation, we find small effects

on aggregates, and the distributional nonlinearities that LM misses seem to be of little

importance for the first two central moments of the ergodic distribution, which is in line

with the similarities of the IRFs documented before in Figure 2.

For the wealth distribution itself, in line with Bhandari et al. (2023), we find that
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the two methods are already for the second-order perturbation qualitatively different

(even though differences are small). LM always predicts a decrease in wealth inequality

while DEGM, which avoids the Bhandari et al. (2023) criticism, predicts that inequality

might increase in response to aggregate risk compared to the stationary equilibrium. The

underaccumulation and increase in wealth inequality is driven by lower savings of less

wealthy households. For these households, the substitution effect dominates as they have

little capital income. Moreover, a lower capital stock implies a lower wage rate and a

higher rate of return on capital. For wealthy households, however, the income effect is key

and they have strong precautionary saving motives given the aggregate investment risk.

Thus, while a capital depreciation shock upon realization compresses the distribution of

wealth, as can be seen in Figure 2, the risk of such a shock can increase wealth inequality

on average.

At higher orders, the interaction of income and substitution effect starts to play a role:

how is the savings response to a change in income altered by a simultaneous change in

investment opportunities? This is relevant when considering the risk of capital destruc-

tion, which induces a negative correlation between today’s capital income, and future

returns on investment. However, this correlation does not only matter for the individual

household’s optimization problem, but also for the interaction of optimal policies in the

cross-section. As we show in Appendix A.2, LM misses several of the higher-order terms

when computing IRFs and the ergodic distribution. The reason is that the higher-order

effect of a change in the savings policy on the wealth distribution in t+1 depends on the

curvature of the wealth distribution in t (in Appendix A.3 we derive this analytically).

Since LM models a discrete distribution, it only accounts for the level of the “density”

at a specific point, namely the size of the mass point. In contrast, DEGM models the

continuous limit of the wealth distribution. Thereby, it accounts for marginal transition

flows across wealth levels. The marginal flows are characterized by the slope and the

curvature of the density.17

17For example, at a wealth level a where the density f(a) is falling and convex, the marginal outflow
when transitioning to other points on the distribution is dominated by households with wealth slightly
below a. This means that the substitution effect is marginally more important for the change in distri-
bution induced by the outflows from point a, if the substitution effect is more important for the poorer
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5 Conclusion

We propose a novel endogenous gridpoint method for distributional dynamics (DEGM ).

Our method retains the tractability and speed of the lottery/histogram methods com-

monly used in the literature, while requiring significantly fewer gridpoints and capturing

all nonlinear effects of distributional dynamics. By preserving the nonlinearities critical

to heterogeneous agent models, DEGM provides an improved framework for studying

models with household heterogeneity and aggregate risk. It allows for a straightforward

implementation in the established sequence and state-space approaches for solving het-

erogeneous agent models with aggregate shocks (Auclert et al., 2021; Bayer et al., 2024).

We provide an example of a state-space solution with a third-order perturbation. In

particular, we propose a Krusell and Smith (1998) model with aggregate investment risk.

In this model, we show that aggregate investment risk affects inequality.
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A Perturbation of Distributional Dynamics

A.1 Comparison of Discretized Methods

We compare discretized methods18 of distributional dynamics by abstracting from the

stochastic transition across income levels, i.e., transitions across wealth levels are governed

only by the optimal policy function. A is the wealth grid. Ft(j) denotes the cumulative

probability at wealth level Aj at time t, and Ft := [Ft(j)]j. a∗t (i) ∈ A∗
t is the optimal

policy at wealth level Ai at time t.

The “lottery” method (LM) represents the dynamics of F as

Ft+1(m) =
m∑
j=1

∑
i

A∗
t (i, j) (Ft(i)− Ft(i− 1)) , (16)

where A∗
t (i, j) = Ia∗t (i)∈[Aj ,Aj+1)

Aj+1−a∗t (i)
Aj+1−Aj

+ Ia∗t (i)∈[Aj−1,Aj)
a∗t (i)−Aj−1

Aj−Aj−1
. Clearly, A∗

t (i, j) is

linear in optimal policies a∗.

DEGM, instead, works through an interpolation

Ft+1(j) =
ˆ̃F (Aj | A∗

t , Ft), (17)

with values at interpolation nodes ˆ̃F (a∗t (i) | A∗
t ,Ft) = Ft(i). If the interpolator is

piecewise linear (linear spline), DEGM has a structure similar to LM :

Ft+1(j) =
∑

i: a∗t (i−1)<Aj≤a∗t (i)

A∗,L
t (i, j) (Ft(i)− Ft(i− 1)) + Ft(i− 1), (18)

where A∗,L
t (i, j) =

Aj−a∗t (i−1)

a∗t (i)−a∗t (i−1)
. Still, it is nonlinear in a∗ as the optimal policies are the

interpolation nodes in DEGM.

Instead, we use a cubic spline for interpolation as it captures nonlinearities of the con-

tinuous limit (see Appendix A.3). This adds smoothness conditions to the interpolation

nodes. In practice, we use a piecewise cubic Hermite interpolating polynomial algorithm

that preserves monotonicity (Fritsch & Butland, 1984), with a one-sided approximation

18We call a method “discretized” when a continuous distribution is represented by a finite vector.
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of the slopes at the endpoints. A change at an interpolation node-value pair (a∗t (i), Ft(i))

affects the entire interpolated function, so DEGM has the general form of Equation (17).

A.2 Generalization and Higher-Order Terms

To discuss the perturbation attributes of distributional dynamics, we propose the form

Ft+1 = A(a∗t )Ft, (19)

where we treat the distribution F and the optimal policies a∗ as scalars for ease of exposi-

tion. This structure captures the “lottery” method and piecewise linear interpolation ex-

actly, and DEGM with our implementation of cubic spline interpolation approximately.19

We analyze the Taylor expansion of this dynamic with respect to the deviation F̂t = Ft−F̄

and disturbances in aggregate variables that affect optimal policies. While in the main

text, we consider a disturbance of aggregate state variable ξt, here we are more specific

and account for the fact that state ξt affects optimal policies only through control vari-

ables Pt and νt.
20 Thus, we approximate around a steady state characterized by F̄ , P̄ ,

ν̄, and ā∗, where the disturbances F̂t, P̂t, and ν̂t are zero. The terms in red are zero for

methods that are linear in optimal policies.

First-order approximation:

Ft+1 ≈ F̄ +A(ā∗)F̂t +
∂A(ā∗)

∂a∗
F̄

(
∂a∗t
∂Pt

P̂t +
∂a∗t
∂νt

ν̂t

)
(20)

Second-order additional terms:

19Locally, ˆ̃F (Aj | A∗
t , Ft) ≈ ˆ̃FF (Aj | A∗

t , F̄)F̂t. The simple cubic spline interpolation is exactly linear
in the vector Ft, but by taking the harmonic mean of the neighboring slopes at the interpolation nodes,
which preserves monotonicity, our method loses this property. We abstract from this implementation
detail.

20That is,
∂a∗

t

∂ξt
=

∂a∗
t

∂Pt

∂Pt

∂ξt
+

∂a∗
t

∂νt

∂νt

∂ξt
. Pt has the interpretation of market prices in t, while νt has the

interpretation of marginal values at idiosyncratic states in period t+ 1, expected in t.
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∂A(ā∗)

∂a∗
F̂t

(
∂a∗t
∂Pt

P̂t +
∂a∗t
∂νt

ν̂t

)
︸ ︷︷ ︸

(I)

+

(
∂A(ā∗)

∂a∗
∂2a∗t
∂Pt∂νt

+
∂2A(ā∗)

∂a∗2
∂a∗t
∂Pt

∂a∗t
∂νt

)
︸ ︷︷ ︸

(II)

F̄ P̂tν̂t+

+
F̄

2

[
∂A(ā∗)

∂a∗

(
∂2a∗t
∂P 2

t

P̂ 2
t +

∂2a∗t
∂ν2

t

ν̂2
t

)
+

∂2A(ā∗)

∂a∗2

((
∂a∗t
∂Pt

)2

P̂ 2
t +

(
∂a∗t
∂νt

)2

ν̂2
t

)]
︸ ︷︷ ︸

(III)

(21)

Third-order additional terms:

F̂t

(
(II)P̂tν̂t +

1

2
(III)

)
︸ ︷︷ ︸

(I*)

+
F̄

6
P̂ 3
t

(
∂A(ā∗)

∂a∗
∂3a∗t
∂P 3

t

+ 3
∂2A(ā∗)

∂a∗2
∂2a∗t
∂P 2

t

∂a∗t
∂Pt

+
∂3A(ā∗)

∂a∗3

(
∂a∗t
∂Pt

)3
)

︸ ︷︷ ︸
(III*)P

+

+
F̄

2
P̂ 2
t ν̂t

(
∂A(ā∗)

∂a∗
∂3a∗t

∂P 2
t ∂νt

+
∂2A(ā∗)

∂a∗2

(
∂2a∗t
∂P 2

t

∂a∗t
∂νt

+ 2
∂2a∗t
∂Pt∂νt

∂a∗t
∂Pt

)
+

∂3A(ā∗)

∂a∗3
∂a∗t
∂νt

(
∂a∗t
∂Pt

)2
)

︸ ︷︷ ︸
(II*)P2ν

+

+
F̄

6
ν̂3
t (· · · )︸ ︷︷ ︸

(III*)ν

+
F̄

2
ν̂2
t P̂t (· · · )︸ ︷︷ ︸

(II*)ν2P

(22)

Term (I) captures an interaction effect with the distribution: the distributional dy-

namics are different when the optimal policy is different from steady state. Term (II) cap-

tures an interaction effect between control variables: the simultaneous deviation of prices

and value functions from steady-state affects the pass-through of the steady-state distri-

bution via nonlinear optimal polices, and via an interaction of their respective first-order

effects on optimal policies. Term (III) captures the effects of second-order fluctuations

in control variables, which operate through the same channels as the interaction effect.

Terms (I*), (II*):=(II*)P 2ν+(II*)ν2P and (III*):=(III*)P+(III*)ν are the analogons

at third order, where (III*) captures skewness in control variables.
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A.3 Nonlinearity of the Kolmogorov Forward Equation in a*

In Appendix A.2, we show that (discretized) distributional dynamics should be nonlinear

in optimal policies to account for higher-order effects. We now analyze the distributional

dynamics in the continuous limit, which provides an intuition for the cause of the non-

linearities and shows why it is crucial for the interpolation method of DEGM to account

for the curvature of the distribution.

To see that even in the limit LM misses a potentially important nonlinearity, again

use the monotonicity of the policy function to write the end-of-period distribution as:

F̃t(a
′ | y) =

∫
x|a∗(x,y|ξ)≤a′

ft(x | y)dx =

∫ a∗−1(a′,y|ξ)
ft(x | y)dx. (23)

Here we explicitly denote that optimal policies depend on some aggregate variable(s) ξ.

This implies that the first-order (Frechet) derivative of F̃t w.r.t. some variable ξ is

∂F̃t(a
′ | y)

∂ξ
= ft(a

∗−1(a′, y | ξ) | y)∂a
∗−1(a′, y | ξ)

∂ξ
, (24)

so that the second-order derivative of F̃t w.r.t. some variable ξt is

∂2F̃t(a
′ | y)

∂ξ2
= ft(a

∗−1(a′, y | ξ) | y)∂
2a∗−1(a′, y | ξ)

∂ξ2
(25)

+
∂ft(a

∗−1(a′, y | ξ) | y)
∂a

(
∂a∗−1(a′, y | ξ)

∂ξ

)2

.

This shows that the nonlinear effects of a change in ξ are composed of a nonlinear

effect on the policies (here their inverse) and the derivative of the density w.r.t. a at the

pre-image of a′ times the squared linear effect of ξ on the (inverse) policy. The effect

on the distribution Ft+1 will be the average over income shocks. Thus, on average, the

importance of the second term will be smaller for more symmetric distributions.
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B Higher-Order Perturbation Solution of Heteroge-

neous Agent Models

B.1 Setting up the Model as a Difference Equation

We write the model as a difference equation Ξ (·) = 0, where Ξ combines all equilibrium

conditions from heterogeneous households, Ξi, and representative firms as well as market

clearing, ΞA:

Ξ (Ft, St, νt, Pt, Ft+1, St+1, νt+1, Pt+1, εt+1) =

Ξi (·)

ΞA (·)

 (26)

Ξi (·) :=

 Ft+1 − L(Ft, h
k
t )

νt −
(
uhk

t
+ βEy′νt+1

)
 (27)

ΞA (·) :=


St+1 −H(St) + ηεt+1

Φt(h
k
t , Ft)

εt+1

 (28)

s.t.

hk
t (k, y) = arg max

k′∈Γ(y,k;Pt)
u(y, k, k′) + βEy′|yνt+1(y

′, k′), (29)

where Ft is the cumulative distribution function over idiosyncratic states (k, y), νt is the

value function of households, St ∈ Rn denote the aggregate states in this economy other

than the distribution of agents over their idiosyncratic states, and Pt denote aggregate

prices (or other aggregate controls). We solve the system for the state dynamics h :

(Ft, St) 7→ (Ft+1, St+1) and the state-to-control mapping g : (Ft, St) 7→ (νt, Pt). These

functions are implicitly defined by

Et [Ξ ((Ft, St), g(Ft, St), h(Ft, St), g(h(Ft, St)), σεt+1)] = 0, (30)

where σ is the perturbation parameter. Following Reiter (2002), we use a Taylor expan-

sion around the non-stochastic steady state characterized by σ = 0, to approximate the
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response to aggregate shocks εt. This requires differentiating Ξ up to the desired order

of the Taylor approximation of h and g.

B.2 State-Space Reduction

In the main text, we show that four alternative ways to approximate the distribution and

value functions lead to virtually the same results.

First, we consider a version where F and ν are represented by a set of values on the full

idiosyncratic state space (Cartesian product).

Second, we consider a version where F is represented by marginal distributions and their

copula, which again is represented by a set of values on a coarser grid of percentiles com-

pared to the full idiosyncratic state space, but the value function ν remains unchanged.

Here, we use 20 gridpoints along the asset dimension and the full grid along the human

capital dimension to have a fine representation of the copula.

Third, we consider a version that reduces the dimensionality of the (marginal) value func-

tion by approximating νt ≈ S ν̂t, where the projection matrix S is obtained from a DCT

of the steady-state value function as described in Bayer and Luetticke (2020). Here, we

keep 99.99% of the variation of the steady-state value function in an R2-sense.

Fourth, we implement the refinement from Bayer et al. (2024) that uses the first-order

approximation of the model with a sufficiently rich set of shocks to obtain the resulting

factor structure of the copula function, where we keep all eigenvalues larger than 1e-16

from the Jordan eigenvalue decomposition. Similarly, one could derive the factor repre-

sentation of the value function. We do not need this for the third-order solution of our

model, because the number of controls is already small enough, and numerically more

expensive is the number of state variables. The first-order solution uses the Bayer and

Luetticke (2020) reduction. The sufficiently rich set of shocks is necessary to approximate

the dynamic effects of all current and future relative price changes that appear under the

higher-order approximation. For example, in the first-order approximation with a fixed

discount factor, there is a one-to-one relationship between the ratio of expected marginal

utilities and the interest rate. In the higher-order solution, this relationship is not as tight
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because of varying risk premia. In a model with just one asset, a shock to the discount

factor can serve as a stand-in in the first-order solution.

In order to extend Bayer and Luetticke (2020) and Bayer et al. (2024) to higher-

order perturbations and the use of DEGM, we first adjust the method by using splines

instead of linear interpolants to represent copulas and value functions. Second, we write

up the marginal distributions in terms of continuous CDFs instead of point-masses (and

hence PDFs). When perturbing the CDFs, we make sure that the perturbation preserves

essential CDF characteristics—namely, monotonicity and confinement within the unit

interval.

B.3 Solution of Higher-Order Perturbations

Once the derivatives of Ξ are calculated, we solve for the derivatives of h and g by writing

up a system of linear equations in the concise manner of Levintal (2017). Since our model

is much larger than what Levintal solves, we innovate in terms of how to sparsely set up

components like the permutation matrix and in terms of how to efficiently compute ma-

trix Kronecker products. Finally, we use pruned dynamics when computing endogenous

moments and generalized impulse responses, following Andreasen et al. (2018).

More in detail, to compute the second-order component of the Taylor approximations

of h and g, denoted by hxx and gxx, respectively, we set up the condition

A2 + Ξ4gxxB2 + Ξ2gxx + (Ξ3 + Ξ4gx)hxx = 0 (31)

which follows from taking the total derivatives of Equation (30). We use the notation

of Levintal (Equation (17) therein): A2 is the Hessian of the system of model equations

Ξ multiplied with (the product of) first-order derivatives of h and g, and B2 contains

the sum of the Kronecker-square of the first-order derivative of h and of shock variances.

Note that the first-order derivatives of h and g are already taken as given here.

As outlined in Levintal (2017), Equation (31) can be split up into two blocks, where

the first solves for higher-order system dynamics, and the second afterwards for the risk
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correction terms hσσ and gσσ. The first block can be rewritten in terms of a generalized

Sylvester equation:

X +A−1BXh⊗2
x +A−1A2 = 0 (32)

with X = [hxx, gxx], A = [Ξ3 + Ξ4gx Ξ2] and B = [0 Ξ4]. We use that the lower

rows contain conditions on gxx only, due to the zero-columns in B, while hxx can be

computed closed-form once gxx is known. We solve the equation for gxx iteratively, using

the doubling algorithm proposed by Kim et al. (2008).

Levintal (2017) applies the method to models with about 20 variables, while we use our

implementation to solve models with up to 3200 variables second order and with up to 220

variables third order. To achieve this, we innovate mainly on two accounts: We generate

and store large matrices such as A2 sparsely, and we avoid the direct computation of

large Kronecker products by computing the product of a Kronecker product with another

matrix in a two-step procedure:21

A(B ⊗B) = reshape

[vec(A(1)B) · · · vec(A(n)B)]︸ ︷︷ ︸
=:M

B

 (33)

where A(k) denotes the k-th column block of A with column-size n. M is computed

first and the matrix product MB second. These numerical optimizations are necessary

to avoid running out of memory. To see this, consider the Hessian of a model (without

dimensionality reduction) with ny = 10 and nk = 160 gridpoints. This Hessian has

roughly 3200 × (2 × 3200)2 ≈ 130 billion entries,22 at least half of which are typically

zeros, half of which are known upfront, as outlined in Bayer and Luetticke (2020).

21This uses the property of Kronecker products that A1⊗A2 = (A1⊗ Im2)(In1 ⊗A2), where m2 is the
number or rows of matrix A2, and n1 is the number of columns of matrix A1. See, e.g., Fackler (2019) for
a recent discussion on memory savings when multiplying a chain of Kronecker products with a matrix.

22The system has roughly 10 × 160 = 1600 states (the distribution) and 10 × 160 = 1600 controls
(optimal value function over the distribution), and thus 3200 equilibrium conditions in total. Both present
and future states and controls enter as variables in the system, which sums up to 2 × 3200 variables.
For each equilibrium condition, the Hessian stores second-order derivatives and cross-derivatives of all
variables, which amounts to (2 × 3200)2 entries by equilibrium condition. We keep symmetric cross-
derivatives, as it simplifies setting up the Sylvester equation, following Levintal (2017).
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B.4 Calculating Central Moments of the Ergodic Distribution

of the Higher-Order Solution

We compute all first and second moments of the higher-order solutions using closed-form

solutions. We describe the closed-form solution for the first moment of the states of

the second-order solution below. We proceed analogously for the higher-order moments

and solutions: Taking the matrices of the respective pruned state-space system from

Andreasen et al. (2018), we iteratively go through the rows, starting at the bottom, and

solve the respective matrix equations for the unconditional moments.

The state space system in Andreasen et al. (2018) for the second-order moment with

pruning is:

Et


xf
t+1

xs
t+1

xf
t+1 ⊗ xf

t+1

 =


hx 0 0

0 hx
1
2
Hxx

0 0 hx ⊗ hx




xf
t

xs
t

xf
t ⊗ xf

t

+


0

1
2
hσσ

(η ⊗ η)vec(Σϵ)

 (34)

One can solve this directly in the unconditional expectation of E[xf ;xs;xf ⊗ xf ]T ,

and then E[xf ] + E[xs] is the unconditional first moment up to second order, pruned of

all higher-than-second-order terms.

Due to its recursive block structure, one can also solve the system iteratively. This

yields the same procedure as proposed by Rudebusch and Swanson (2012). First, rewrite

the last row from the Kronecker-product notation into the (more familiar) second-moment

notation. For this, note that E[xf ⊗ xf ] = vec(Σxf ), where Σx denotes the (uncentered)

variance-covariance matrix of x. Then, the last row is

vec(Σxf ) = (hx ⊗ hx)vec(Σxf ) + (η ⊗ η)vec(Σϵ) (35)

⇔Σxf = hxΣxfhT
x + ηΣϵη

T (36)

This is exactly the equation Rudebusch and Swanson (2012) solve for the variance-
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covariance matrix, which they call Σx. This is where the pruning happens, as this equation

only includes first-order dynamics.

The second row in system (34) is then

E[xs] = hxE[xs] +
1

2
(Hxxvec(Σxf ) + hσσ) (37)

This is exactly the equation Rudebusch and Swanson (2012) solve for the uncondi-

tional second moments, after plugging in Σx as computed from first-order dynamics. As

our system is defined in deviations from steady state, E[xf ] = 0 trivially.

Next, we describe the closed-form solution for the first moments of the states of

the third-order solution with pruning. The third-order system extends the second-order

system by three row-blocks and three column-blocks:

Et



xf
t+1

xs
t+1

xf
t+1

⊗2

xt
t+1

xf
t+1 ⊗ xs

t+1

xf
t+1

⊗3


=



hx 0 0 0 0 0

0 hx
1
2
Hxx 0 0 0

0 0 hx ⊗ hx 0 0 0

3
6
hσσx 0 0 hx Hxx

1
6
Hxxx

hx ⊗ 1
2
hσσ 0 0 0 h⊗2

x hx ⊗ 1
2
Hxx

0 0 0 0 0 h⊗3
x





xf
t

xs
t

xf
t

⊗2

xt
t

xf
t ⊗ xs

t

xf
t

⊗3



+



0

1
2
hσσ

(η ⊗ η)vec(Σϵ)

1
6
hσσσ

0

(η⊗3)E[ϵ⊗3]


(38)

We solve for the unconditional expectations of the last three row-blocks. First, we

solve for the unconditional expectation of the triple Kronecker product of the first-order
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dynamics:

E[xf⊗3
] = h⊗3

x E[xf⊗3
] + (η⊗3)E[ϵ⊗3] (39)

where E[ϵ⊗3] contains three types of non-zero elements: expectations of all triple-combinations

of shocks, expectations of all tuple-combinations of shocks where one shock is squared,

and third moments of all shocks. We use the doubling algorithm (Kim et al., 2008) to solve

(39) for E[xf⊗3
]. In order to achieve this computationally, we use that (h⊗3

x )2 = (h2
x)

⊗3,

and compute the Kronecker-matrix product ((h2
x)

⊗2 ⊗ h2
x)E[xf⊗3

] only indirectly, as de-

scribed in Appendix B.3.

Next, we solve for the unconditional expectation of the Kronecker product of the first-

and the additional second-order dynamics, using the same techniques:

E[xf ⊗ xs] = h⊗2
x E[xf ⊗ xs] + (hx ⊗

1

2
Hxx)E[xf⊗3

] (40)

Note that this equation follows from E[xf ] = 0 dropping out of the second-to-last row

block. Lastly, we set up the equation to solve for the unconditional expectation of the

additional third-order dynamics, E[xt]:

E[xt] = hxE[xt] +HxxE[xf ⊗ xs] +
1

6

(
HxxxE[xf⊗3

] + hσσσ

)
(41)

The sum E[xs] + E[xt] is the unconditional first moment up to third order, pruned of

all higher-than-third-order terms, of the deviations of states from their values in non-

stochastic steady state.

For computing the second moments of the second-order system, we follow “Method

3” of the Online Appendix of Andreasen et al. (2018). We need to compute the elements

of the matrix

E[ztz
′
t] = E




xf
t

xs
t

xf
t

⊗2


(
(xf

t )
′ (xs

t)
′ (xf

t

⊗2
)′
) (42)
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First, we compute E[(xf
t

⊗2
)(xf

t

⊗2
)′]. We use that xf

t+1

⊗2
= h⊗2

x xf
t

⊗2
+ vt+1, where we

define vt as the variable that contains all interactions with shocks in the system:

vt+1 = (hx ⊗ η)(xf
t ⊗ ϵt+1) + (η ⊗ hx)(ϵt+1 ⊗ xf

t ) + (η⊗2)(ϵ⊗2
t+1) (43)

This leads to

E[(xf
t

⊗2
)(xf

t

⊗2
)′] = h⊗2

x E[(xf
t

⊗2
)(xf

t

⊗2
)′](h⊗2

x )′ + h⊗2
x vec(Σx)E[v′t+1]

+ E[vt+1]vec(Σx)
′(h⊗2

x )′ + E[vt+1v
′
t+1] (44)

Since E[xf
t ⊗ ϵt+1] = E[xf

t ⊗ Etϵt+1] = 0 by the Law of Iterated Expectations, we

find that E[vt+1] = vec(ηΣϵη
′). To compute E[vt+1v

′
t+1], we first note that E[(xf

t ⊗

ϵt+1)(ϵ
⊗2
t+1)

′] = E[(xf
t ⊗ Im)(In ⊗ ϵt+1)(ϵ

⊗2
t+1)

′] = 0, since E[xf
t ] = 0. We then have

E[vt+1v
′
t+1] = (hx ⊗ η)(vec(Σx)⊗ vec(Σϵ))(hx ⊗ η)′ (45)

+ (hx ⊗ η)E[(xf
t ⊗ ϵt+1)(ϵt+1 ⊗ xf

t )
′](η ⊗ hx)

′ (46)

+ (η ⊗ hx)E[(ϵt+1 ⊗ xf
t )(x

f
t ⊗ ϵt+1)

′](hx ⊗ η)′ (47)

+ (η ⊗ hx)(vec(Σϵ)⊗ vec(Σx))(η ⊗ hx)
′ (48)

+ (η ⊗ η)E[(ϵt+1ϵ
′
t+1)

⊗2](η ⊗ η)′ (49)

where E[(ϵt+1ϵ
′
t+1)

⊗2] contains expectations of all quadruple-combinations of shocks, ex-

pectations of triple-combinations of shocks where one shock is squared, expectations

of tuple-combinations of shocks where both shocks are squared, expectations of tuple-

combinations of shocks where one shock is cubed, and the kurtosis of all shocks.23 Then,

we solve Lyapunov equation (44) for E[(xf
t

⊗2
)(xf

t

⊗2
)′] using the doubling algorithm, again

by avoiding the direct computation of too large Kronecker products.

Setting up the Lyapunov equations for E[xs
t(x

f
t

⊗2
)′], E[xs

t(x
s
t)

′], and E[xf
t (x

s
t)

′] is more

23This shows that, even in a solution that is pruned up to the second order, higher-order shock
moments enter into the variance of the system variables. The computed variance thus corresponds to
the variance of a simulated second-order solution where shocks with non-zero skewness or kurtosis enter.
See Andreasen et al. (2018) for a discussion.
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straightforward, and we refer to the Online Appendix of Andreasen et al. (2018). When

solving for E[xf
t (x

f
t

⊗2
)′], another set of unconditional expectations of shocks has to be

computed, E[ϵt+1(ϵ
⊗2
t+1)

′], which includes the same non-zero elements as E[ϵ⊗3] from above,

including the shocks’ skewness.

Finally, using E[z] =


0

E[xs]

vec(Σx)

, we compute the variance of z as

V ar(zt) = E[ztz
′
t]− E[zt]E[z′t] (50)

From that, we obtain the variances of the control variables of the second-order system as

V ar(yst ) = C2V ar(zt)C
′
2, with C2 = [gx gx

1
2
Gxx]. The variances of the state variables are

computed as V ar(xt) = V ar(xf
t ) + V ar(xs

t) + E[xf
t (x

s
t)

′] + E[xs
t(x

f
t )

′].

Andreasen et al. (2018) do not provide the equations to solve recursively for the second

moments of the third-order solution. As is clear, solving for the unconditional expectation

E[(xf
t

⊗3
)(xf

t

⊗3
)′] is computationally challenging. Using our iterative solution technique,

it requires the computation of terms (hn
x
⊗3)X(hn

x
⊗3)′ for a matrix X of size n3

s×n3
s, which

we do not find feasible as of this writing.
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Figure 3: Stationary distributions at selected income state
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Notes: Conditional CDFs (F (a|y) = P (x ≤ a, z = y)/P (z = y)) for discrete approximations of

the income process with ny = 2, 5, 10, 20 states. We plot the income state iy, where the policy

maps away from the constraint for the first time. The CDF at this income state inherits the

biggest “echoes”. “Lottery” refers to the method which assumes point-masses (Young, 2010).

C Properties of the wealth distributions for discrete

and continuous income processes

In this appendix we prove properties of the distribution function in a generic consumption-

savings problem with discrete or continuous income processes. The first property we show

is that the stationary distribution is nowhere “flat” in the sense that the set of all points

that are reached with strictly positive probability is dense. Second, we show that for

the continuous income process limit, the distribution function inherits continuity and

differentiability from the savings policy. Third, DEGM converges faster than LM to the

true continuous distribution (in the number of gridpoints).

Figure 3 summarizes these results graphically. It shows the stationary distributions

for different approximations of the income process (ny = 2, 5, 10, 20) and solution meth-
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ods. It conditions on the first income state iy where households leave the borrowing

constraint. We zoom in on the wealth level that the household chooses when leaving

the borrowing constraint—i.e., we zoom in on the “echoes” from the mass point at the

borrowing constraint.

We observe all of the above properties in Figure 3: First, even for two income states

and both solution methods, we see that the distribution is nowhere “flat”. Second,

we observe the smoothing effect of increasing the number of income states. With ten

income states, the echoes are almost gone, and with 20 income states they are practically

invisible. Third, given that DEGM and LM converge to the same limit, we observe that

LM with its steps overstates the distribution in between gridpoints. DEGM captures the

continuous increase in mass also between gridpoints more accurately.

C.1 The set of attainable asset states is generically dense

We will show that for the simplest case of two income states, A∗ is dense in a continuous

interval, which is the support of the distribution. Here is the intuition up front: since

we do not truncate histories, an infinite sequence of positive income shocks induces a

converging wealth level, to a fixed point of the optimal policy. That implies density of

A∗ in infinitesimal neighborhoods left to that point. Then, we use the inverse functions

of the optimal policies, to argue that any point in the support of the distribution could

have been reached arbitrarily closely by some income sequence, starting from a wealth

level in these neighborhoods. Of course, this does not hold for arbitrary policy functions

but only for policy functions that adhere to some regularity conditions given below.

We have two income levels, yl and yh, yl < yh. This implies two optimal policy

functions: al(a) := a∗(a, yl) and ah(a) := a∗(a, yh), with a ∈ R≥0.

Assumption 1. Properties of the optimal policy functions

The policy function al is strictly increasing for a > al, and maps to 0 for a ≤ al. ah is

strictly increasing everywhere and ah(0) > 0. Both al and ah are continuous everywhere

and al ≤ ah. There exists ah > 0 such that ∀a > ah : ah(a) < a.
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These assumptions typically hold in consumption-savings models as in Carroll (2006).

The properties imply that there exists a fixed point af , i.e. ah(a
f ) = af . Let af denote

the smallest such fixed point. Further, al(a) < a for all a ∈ [0, af ], as al(al) = 0 < al and

al(a
f ) < af , since al < ah everywhere.

We also assume that

Assumption 2. Dissaving at the top

There exists some ã such that ah (al(a)) < a for all a > ã, with 0 ≤ ã < al(a
f ).

In words, we assume that for high enough wealth the household dissaves on net after a

sequence of a low income realization followed by a high one. Conversely, the assumption

implies a−1
l

(
a−1
h (a)

)
> a.

Assumption 3. Savings propensities strictly below one

There exists a strictly positive number ϵ such that both inverse functions a−1
l and a−1

h

have a slope above 1 + ϵ everywhere on (ah(0), a
f ).

Note that this implies that the concatenation x 7→ a−1
l (a−1

h (x)) also has a slope above

1+ ϵ. We find that these properties hold for the policy functions that solve the consump-

tion savings problem with a two income process for a typical calibration; see Figure 4 for

the illustration of these properties for such an example.

a◦nh (a) denotes the n-times concatenation of the optimal policy map under a positive

income shock, starting at a. The strict monotonicity and the existence of fixed point af

implies that the sequence {a◦nh (0)}n converges to af . af may not be in A∗.

It is to show that A∗ is dense in [0, af ).

Lemma 1. A∗ is dense in (al(a
f ), af ).

Proof by contradiction. Assume there exists an open interval M0 ⊂ (al(a
f ), af ) such that

A∗ ∩ M0 = ∅. Then there must be no combination of income shocks that lead to an

element of M0. However, we can inversely construct the necessary sequence of income

states iterating over sets Mi starting at M0:
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Figure 4: Policy functions for example income process

1. Map Mi =: (xi, zi) to M̂i = (x̂i, ẑi) by m times concatenating a−1
h , such that

x̂i < al(a
f ). This is always possible, as a−1

h (a) < a for all a < af . Choose small-

est m that achieves this. Then define the next iteration Mi+1 := a−1
l

(
M̂i

)
=(

a−1
l (x̂i), a

−1
l (ẑi)

)
.

2. If af ∈ Mi+1, the proof is complete, as it cannot be that an open set around af has

no overlap with A∗ because ah has a slope below one and af is reached only as the

limit of a sequence of infinitely many high income realizations and thus (af − ϵ, af )

contains points in A∗ for any ϵ > 0.

3. If af /∈ Mi+1, then zi+1 < af because xi+1 < af by construction. At the same time,

again by construction, the m−1-times concatenation of a−1
h evaluated at xi is above

al(a
f ), and thus above ã. Therefore, xi+1 = a−1

l (a−1
h (a−1◦m−1

h (xi))) > al(a
f ). Hence,

Mi+1 := (xi+1, zi+1) ⊂ (al(a
f ), af ), and one returns to step 1.

The open intervals {Mi}i have no overlap with A∗. Since a−1
h has a slope above 1+ ϵ,

ẑi−x̂i > (1+ϵ)(zi−xi). Since a
−1
l ◦a−1

h has a slope above 1+ϵ, zi+1−xi+1 > (1+ϵ)(ẑi−x̂i).
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Hence, the intervals {Mi}i strictly increase in their size at least at rate (1+ ϵ)2 in i. One

can therefore choose a subsequence {i(k)}k of intervals where it holds that the upper

bounds, zi(k), are strictly increasing, and where the intervals in the subsequence nest

each other. Hence, if the iteration continues indefinitely, the sequence
{
zi(k)

}
k
converges

to af . This is a contradiction to the existence of a convergent series in A∗ with limit

af : Choose an arbitrary index k of the subsequence of intervals
{
Mi(k)

}
k
with upper

limit zi(k). There must exist a∗ ∈ A∗ ∩ (zi(k), a
f ). But then, there is a k′ > k with

zi(k′) ∈ (a∗, af ), and since intervals in the subsequence are nested, xi(k′) < a∗, which is

contradictory.

Lemma 2. A∗ is dense in [0, al(a
f )).

Proof by contradiction. Assume there exists an open interval M0 := (x, z) ⊂ (0, al(a
f ))

with no overlap with A∗. Construct a sequence of intervals {Mi}i with

Mi := a−1
l ◦ a−1

l ◦ · · · ◦ a−1
l︸ ︷︷ ︸

i times

(M0) (51)

It must be that (∪iMi) ∩ A∗ = ∅. Denote the upper bound of Mi by zi. Since by

assumption, a−1
l (a) > a for a ∈ (0, af ], {zi}i is a strictly increasing sequence. Suppose it

was bounded above by κ ≤ al(a
f ). This would imply that for all ϵ > 0 small, κ − ϵ <

a−1
l (κ − ϵ) < κ. Since a−1

l is continuous, this would imply a−1
l (κ) = κ, which is a

contradiction. Thus, ∪iMi overlaps with (al(a
f ), af ). This is a contradiction by Lemma

1.

Combining Lemma 1 and Lemma 2, we have:

Theorem 1. A∗ is dense in [0, af ). If the borrowing constraint is binding, the set is

countable.

Proof. Denseness follows from Lemma 1 and 2. Countability from the borrowing con-

straint being binding. In that case, we can enumerate the sequence of income states since

the borrowing constraint was last binding (coding a sequence like HLLH as 1001, HHLLH

as 11001, etc.).

43



C.2 Implications for approximation quality

Next, we discuss the ability of DEGM, as described in Section 2, to approximate the

distribution over A∗, which we define as Fny . That is, even if the income process is

discrete, with a finite number ny of income states, we show that DEGM with continuous

interpolation approximates the true discrete distribution well. A crucial part of the proof

is that A∗ is dense in a continuous interval, which we have shown for the case ny = 2,

and which also holds for larger ny.
24

Theorem 2. Let F ′
ny

denote the distribution generated by one iteration of DEGM, start-

ing at the true distribution Fny of A∗, for a given wealth grid A and given optimal policy

functions a∗(a, y). For any δ > 0, there exists N > 0 s.t. there is a finite set of points

A ⊂ A∗, |A| ≤ N , s.t. ∀ a ∈ A∗ \ A, there exists M > 0 s.t. if A has at least size M ,

|A| ≥ M , it holds that

|F ′
ny
(a)− Fny(a)| < δ (52)

Proof. For a given δ > 0, Fny can only have a finite number N of jump points where the

jump is larger than δ/2, i.e. points A := {a1, .., aN} s.t. for any aj ∈ A, Fny(aj−ϵ)+δ/2 <

Fny(aj) for all ϵ > 0. This just follows from cumulative distribution function Fny being

bounded above by 1. It implies that for any point a ∈ A∗ \ A, there exists ϵ > 0 such

that Fny(a) − Fny(a − ϵ) ≤ δ/2. Also, since A is not dense, there exists ϵ̄ > 0 such that

Fny(a+ ϵ̄)− Fny(a) ≤ δ/2. Let ϵ := min{ϵ, ϵ̄}. Crucially, as A∗ is dense in R, the points

a± ϵ can be assumed to be in the support of Fny w.l.o.g.

The interpolation nodes of DEGM are tuples consisting of optimal policy choices, A∗
i,j,

where j = 1, .., ny indexes the income level, and the cumulative probability of the cor-

responding on-grid wealth level Ai. The wealth grid A with length M has the property

that the maximum distance between neighboring gridpoints, h := maxi {Ai −Ai−1}i,

falls in M . Since the optimal policy function is strictly monotone in wealth above

the borrowing constraint, the maximum distance between interpolation nodes, h∗ :=

24More income levels, stemming from a finer discretization of a continuous income process that remains
the same, can only increase the variety of optimal policy choices, and thus the size of A∗. Importantly,
the properties of optimal policy functions used in the proof for the case ny = 2 stay intact, as the
underlying optimization problem of the household does not change.
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maxi
{
A∗

i,j −A∗
i−1,j

}
i
, also falls in M . For a given a ∈ A∗ \ A, we can then increase M

such that for each j there exists a smallest interval (A∗
i−1,j,A∗

i,j) that contains a, and

where (A∗
i−1,j,A∗

i,j) ⊂ (a− ϵ, a+ ϵ).

We provide the proof for DEGM with linear spline interpolation. Cubic spline interpo-

lation will only improve the approximation, as the degree of freedom of the interpolating

polynomial increases. With linear spline interpolation, one DEGM step is given by

F ′
ny
(a | Yk) =

∑
j

{
Fny(A∗

i,j | Yj)
a−A∗

i−1,j

A∗
i,j −A∗

i−1,j

+ Fny(A∗
i−1,j | Yj)

A∗
i,j − a

A∗
i,j −A∗

i−1,j

}
Πj,k

(53)

Repeatedly applying the triangle inequality, and using that the interpolation weights are

bounded above by 1, we get

|F ′
ny
(a | Yk)− Fny(a | Yk)| ≤ (54)∑

j

{
|Fny(A∗

i,j | Yj)− Fny(a | Yj)|
a−A∗

i−1,j

A∗
i,j −A∗

i−1,j

}
Πj,k+ (55)

∑
j

{
|Fny(A∗

i−1,j | Yj)− Fny(a | Yj)|
A∗

i,j − a

A∗
i,j −A∗

i−1,j

}
Πj,k (56)

<
δ

2
2
∑
j

Πj,k = δ (57)

Integrating over income states gives the result for the marginal distribution:

|F ′
ny
(a)− Fny(a)| ≤

∑
k

|F ′
ny
(a | Yk)− Fny(a | Yk)|P (Yk) < δ (58)

Theorem 2 shows that DEGM approximates the discrete distribution well with a

continuous distribution. In fact, its approximation is likely better than the piecewise

constant approximation of LM in most cases. The reason is that in between gridpoints,

the distribution function is increasing (on a dense set). A piecewise constant approxima-

tion does not take this into account, so that for a fixed grid, there exists a small enough
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δ where the set of points on which the deviation exceeds δ is dense itself. Confirming

this intuition, in the next section we show that DEGM converges faster than LM to the

limit distribution.

C.3 Continuous income processes: Continuity and differentia-

bility

We denote the limit distribution of A∗ for ny → ∞ as F̄ .

Theorem 3. F̄ is continuously differentiable on (0, af ] at the order of a∗−1.

Proof. As in section 2, we assume log-income levels to follow an AR(1) process with

normally distributed innovations, where f(z) is the unconditional density of income level

z, and ρ is the autocorrelation coefficient.

We first show the claim for the easiest case of ρ = 0. The optimal policy function a∗

maps asset level a to asset level a′, conditional on income state z. Since income shocks

are iid, a∗ only depends on z through cash-on-hand c(a, z) := c1a + c2z, where c1, c2 are

positive, constant equilibrium prices. We therefore now define a∗c : c 7→ a′ as a map

from cash-on-hand to next period’s asset holding. By assumption, its inverse exists and

is continuously differentiable at a′ ∈ (0, af ] at the order of k. Since income shocks are

iid, the distribution over wealth conditional on the current realization of income shocks

equals the unconditional wealth distribution. We then can characterize the distribution

through a one-step transition:

F̄ (a′) =

∫ ∞

0

F̄

(
a∗c

−1(a′)− c2z

c1

)
f(z)dz (59)

= −
∫ −∞

a∗c
−1(a′)/c2

F̄ (z̃c2/c1) f
(
a∗c

−1(a′)/c2 − z̃
)
dz̃ (60)

=

∫
R
F̄ (z̃c2/c1)I(−∞,a∗c

−1(af )/c2](z̃)h
(
a∗c

−1(a′)/c2 − z̃
)
dz̃ (61)

= (g ∗ h)
(
a∗c

−1(a′)/c2
)

(62)

where g : α 7→ F̄ (αc2/c1)I(−∞,a∗c
−1(af )/c2](α) is integrable, as the cdf F̄ (α) is bounded and

vanishes for α < 0, and h(x) := f(x) if x > 0, h(x) := 0 o.w., inherits smoothness and
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boundedness of its derivates from f .25 Then, the convolution g ∗ h is well defined and,

by Proposition 8.10 in Folland (1999), it is smooth. Note that in step (60), we change

the integration variable. The result implies, by the chain rule, that F̄ is continuously

differentiable at the order of k on a′ ∈ (0, af ], as was to show.

Next, we generalize the result for ρ > 0. Define a∗c(c, ν(y)) as the optimal policy

function given cash-on-hand c, and the additional knowledge of income state y. Since

incomes are persistent, y helps in forecasting future income, and thereby future marginal

utility. Hence, y enters a∗ independently of cash-on-hand only through ν, which signifies

the future value function. We define conditional distributions such that the wealth dis-

tribution is conditioned on the past income level (what we denote as F̃ in the main text):

F̄ (a′ | y), where a′ = a∗c(c, ν(y)) for some c. Then, for some level of cash-on-hand c, we

can write

∫ ∞

0

F̄ (a∗c(c, ν(y)) | y)f(y)dy

=

∫ ∞

0

∫ ∞

0

F̄

(
c− c2y

c1
| z
)
π(z | y)dzf(y)dy (63)

=

∫ ∞

0

∫ c/c2

−∞
F̄ (ỹc2/c1 | z)π(z | c/c2 − ỹ)f(c/c2 − ỹ)dỹdz (64)

=

∫ ∞

0

(gz ∗ hz)(c/c2)dz =: µ(c) (65)

for gz : α 7→ F̄ (αc2/c1 | z)I(−∞,c(af ,ȳ)](α), which is integrable, and hz(x) := π(z |

x)f(x), x > 0, hz(x) := 0, o.w., which inherits smoothness and boundedness of its deriva-

tives from the lognormal density. Therefore, the same proposition as used above applies

and yields that the convolution gz ∗ hz is smooth. As z 7→ gz ∗ hz is integrable, µ(c)

inherits the smoothness.

We prove the final step by contradiction. Suppose the claim is for k = 0, i.e. con-

tinuity. If F̄ is not continuous, there must exist y and a′ ∈ (0, af ] s.t. a′ is a jump

point of F̄ (· | y). This implies that there exists a converging sequence (an)n → a′ s.t.

(F̄ (an | y))n ̸→ F̄ (a′ | y). There is a corresponding sequence of cash-on-hand levels

25This is the case for the density of the lognormal distribution, as exp(− ln(x)2)x−n −→
x→0

0 for all n.
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cn = a∗c
−1(an, ν(y)). For all n, taking the derivative by y and evaluating at y on both

sides of equation (65) gives

F̄ (an | y)f(y) = ∂

∂y
µ(a∗c

−1(an, ν(y))) (66)

Taking the limit inside the differentiation, the right-hand side converges by continuity

of a∗c
−1 to ∂

∂y
µ(a∗c

−1(a′, ν(y))) = F̄ (a′ | y)f(y). This is a contradiction. Contradictions

for the case k > 0 can be constructed analogously, by additionally taking the respective

number of derivatives by a on both sides of the equation.

Corollary 1. Let F̄DEGM denote the distribution generated by one step DEGM, when

the limit distribution F̄ is the input. Let h denote the maximum distance between grid

points Ai, falling in M , the size of A. Assume that a∗−1 is at least twice continuously

differentiable. Then, F̄DEGM converges uniformly to F̄ in M , at least at the rate at which

h2 → 0. In contrast, F̄LM converges to F̄ only at the rate at which h → 0.

Proof. Let h∗ := maxi,j

{
A∗

i,j −A∗
i−1,j

}
. Since a∗ is differentiable, it is also Lipschitz con-

tinuous, hence there exists L > 0 s.t. h∗(M) ≤ Lh(M) for all grid sizes M . Assume that

DEGM is done with linear Spline interpolation (note that higher-order interpolation has

even better convergence properties). Since F̄ is at least twice continuously differentiable

by Theorem 3, we can apply classical results from interpolation theory, see e.g. Schaback

and Wendland (2005), Folgerung 8.20 and Satz 11.3 therein:

|F̄DEGM(a)− F̄ (a)| ≤ Lh2||f̄ ′||∞
8

(67)

for all a ∈ (0, af ], where ||f̄ ′||∞ denotes the supremum norm of the first derivative of the

density of F̄ on (0, af ]. On the other hand, as FLM is piecewise constant, i.e. interpolating

polynomials are of order 0, theoretical convergence is only linear in the maximum distance
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of grid points:26

|F̄LM(a)− F̄ (a)| ≤ Lh||f̄ ||∞
8

(68)

for all a ∈ (0, af ], where ||f̄ ||∞ denotes the supremum norm of the density of F̄ on

(0, af ].

26As we point out in Appendix A.1, LM does not interpolate the CDF. With sufficient convergence,
the LM solution crosses the true, continuous CDF in between gridpoints as well as at gridpoints, when it
jumps (Figure 3 illustrates this, where DEGM solves the system assuming a continuous CDF, while LM
assumes a discrete distribution). We can take the wealth levels where the crossings happen as the implicit
“interpolation nodes” of LM. Interpreted in such a way, LM has double the amount of “interpolation
nodes” as there are gridpoints. Hence, in order to map LM into the space of interpolation methods, we
divide the maximum distance h by 2 when calculating the upper bound in Equation (68).
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D Alternative Calibration

In the following we report convergence results for the transitory income calibration.

Table 6: Convergence under the Lottery method and DEGM with transitory calibration
(calibration as in Table 1)

Lottery DEGM

nh

nk 40 80 160 40 80

Panel A: Stationary distribution [relative deviations in percent]

Capital stock 5 11.52 4.16 1.00 0.24 0.12
10 8.37 2.99 0.78 0.28 0.10
20 7.35 2.65 0.70 0.28 0.09

Wealth gini 5 10.66 4.61 1.15 -0.02 0.02
10 7.86 3.22 0.89 -0.05 0.01
20 6.78 2.75 0.79 -0.04 0.01

Panel B: Stationary equilibrium [relative deviations in percent]

Capital stock 5 0.52 0.19 0.05 0.00 0.00
10 0.47 0.17 0.05 0.01 0.00
20 0.44 0.16 0.04 0.01 0.00

Wealth gini 5 11.27 4.65 1.21 0.22 0.02
10 8.63 3.36 0.96 0.16 0.03
20 7.60 2.91 0.87 0.17 0.03

Panel C: Computation times

Time (s) 5 0.10 0.15 0.24 0.29 0.43
10 0.18 0.26 0.45 0.41 0.65
20 0.35 0.54 1.08 0.82 1.35

Notes : Values represent percent deviations of the solutions with nk and nh gridpoints to
the reference solution, which is DEGM with nk = 160 gridpoints for assets. The aggre-
gates under the lottery methods are derived under discrete aggregation methods while
continuous integration methods are used for DEGM. The table refers to the “transitory”
income calibration from Table 1.
Panel A: calculating only the stationary distribution, using policies from the reference
solution.
Panel B: solving the stationary equilibrium including prices and policies.
Panel C: time in seconds for solving the stationary equilibrium as in Panel B on a laptop
with 16-core, 3.3 GHz CPU.
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Table 7: Convergence at second order under the Lottery method and DEGM (transitory
calibration as in Table 1)

Lottery DEGM

nh

nk 40 80 160 40 80

Panel A: IRF statistic as in Bayer et al. (2024)

Capital stock (FO) 5 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00

Capital stock (SO) 5 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00

Wealth Gini (FO) 5 1.00 1.00 1.00 1.00 1.00
10 0.99 1.00 1.00 1.00 1.00

Wealth Gini (SO) 5 0.94 0.88 0.84 1.00 1.00
10 0.94 0.88 0.84 1.00 1.00

Panel B: SO Moments [relative deviations in basis points]

Capital stock 5 -0.87 -0.83 -0.37 -0.04 -0.03
Capital stock 10 -0.93 -0.90 -0.65 -0.28 -0.19
Wealth Gini 5 -20.21 -24.47 -31.11 2.75 0.75
Wealth Gini 10 -15.34 -18.11 -21.62 1.73 0.95

Notes: For each row, values represent basis point deviations of the solutions with nk gridpoints
to the reference solution (DEGM with nk = 160). Values for the “transitory” income calibration
from Table 1.
Panel A shows the R2 like statistics from Bayer et al. (2024) for an impulse responses following
a 7.5 p.p. shock to δ (over 100 periods) with first-order (FO) and second-order (SO) perturbation

solution. The R2 like statistics is 1−
∑H

h=1

(IRFDEGM,nk=160,nh
(h)−IRFmethod,nk,nh

(h))2∑H
h=1 IRFDEGM,nk=160,nh

(h)2
.

Panel B shows ergodic moment solving the model with a second order perturbation. The
deviation shown is the difference in the percentage point deviation from the respective steady
state in excess of the percentage point deviation in the baseline solution (DEGM, nk = 160).
The aggregates under the Lottery methods are derived under discrete aggregation methods
while continuous integration methods are used for DEGM.
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