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Motivation

I Heterogeneous agent models have at their core the evolution of the
distribution of agents.
(Krusell and Smith, 1998, Reiter, 2009, Den Haan et al., 2010, Bayer and
Luetticke, 2020, Boppart et al., 2018, Auclert et al., 2021, ...)

I Distributional dynamics usually computed with “histogram method”.
(Young, 2010)

I This method is computationally intensive and fails to capture how the
distribution responds to aggregate risk. (Bhandari et al., 2023)
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This Paper: Novel endogenous gridpoint method to model
distributional dynamics

I DEGM (distributional endogenous gridpoint method):
I It’s fast: No integration
I It’s simple: Histogram representation
I It’s shape preserving: Efficient approximation
I It’s nonlinear: Captures aggregate risk

I Method yields large gains in numerical accuracy for all orders of solutions.

I Application: Third-order solution of heterogeneous agent model with
aggregate investment risk.

I Nonlinear distributional dynamics imply higher wealth inequality.
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Problem and Method



Setup

I Consider an economy in discrete time with a distribution of agents (of mass
1) over two variables a and y .

I y follows an exogenous discrete Markov process with transition probability
matrix Π and set of states {Yj}.

I The continuous endogenous variable a is determined by the agent’s policy
function a∗(a, y), which we assume to be strictly monotone in a.

I The cumulative joint distribution (in a) at time t is given by
Ft(a, y) := P(x ≤ a, z = y), where ft(a, y) is the density (continuous along
the a dimension, discrete along the y dimension).
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Problem of Distributional Dynamics

The evolution of the distribution F is given by the time discrete Kolmogorov
forward equation:

Ft+1(a′, y ′) =
∑

j

∫
{x |a′≥a∗(x ,Yj)}

ft(x ,Yj)dx Π(Yj , y ′). (1)

I A brute force approach requires approximation of the integral
I Krusell and Smith (1998) use Monte Carlo methods to solve the Eq. (1)
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Histogram Approach

To avoid this, Young (2010) suggests replacing the continuous distribution in a
with a discrete counterpart, what is commonly referred to as histogram method.

Histogram method:
Density given by the vector f̂ with transition matrix A∗ (policy function a∗(a, y)
as lotteries) such that:

f̂t+1 = f̂tA∗. (2)

Lottery weights determined by relative distance of a∗ to gridpoints
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Our Method: Timing
First define

F̃t(a′,Yj) =
∫
{x |a′≥a∗(x ,Yj)} ft(x ,Yj)dx . (3)

such that
Ft+1(a′, y ′) =

∑
j F̃t(a′,Yj) Π(Yj , y ′). (4)

Ft
start of period

Ft+1
start of period

Ft̃
end of period

t

a* t
Π
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Our Method: Leverage Monotonicity

I How to evaluate F̃t(a′,Yj)?

I Consider the endogenous gridpoints a′ = a∗(a,Yj).

I Use that a∗(·,Yj) is strictly monotone everywhere and thus invertible.
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Our Method: Leverage Monotonicity

I For these points a′ = a∗(a,Yj), the set over which we integrate simplifies to:

{x |a′ ≥ a∗(x ,Yj)} = {x |a∗(a,Yj) ≥ a∗(x ,Yj)} = {x |a ≥ x}

(where the last equation results from the invertibility of a∗)

I This, together with the definition of Ft , again implies that

F̃t(a∗(a,Yj),Yj)︸ ︷︷ ︸
endogenous grid

= Ft(a,Yj)︸ ︷︷ ︸
exogenous grid
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Illustration 1: Beginning of period CDF Ft(1 : 3, j)

a(i=1) a(i=2) a(i=3)

F(a)

9 / 38



Illustration 2: Graph
{(

A∗
1:3,j ,Ft(1 : 3, j)

)}

a(i=1) a(i=2) a(i=3)

F(a)

a*(1) a*(2) a*(3)
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Illustration 3: Construction of interpolant ˆ̃F j
t

a(i=1) a(i=2) a(i=3)

F(̃a)

a*(1) a*(2) a*(3)
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Illustration 4: Evaluation of interpolant ˆ̃Ft(1 : 3, j)

a(i=1) a(i=2) a(i=3)

F(̃a)

a*(1) a*(2) a*(3)
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Algorithm in a Nutshell
Start with the cumulative joint distribution (in a) Ft = [Ft(Ai ,Yj)]

j
i .

1. For each exogenous state with index j, y = Yj , create the interpolant ˆ̃F j
t .

2. Loop through all i , j to evaluate the interpolant to calculate:

ˆ̃Ft(i , j) =


0 if Ai < min

{
A∗

i,j
}

Ft(end , j) if Ai > max
{
A∗

i,j
}

ˆ̃F j
t (Ai) else

This yields the CDF in a on the fixed grid {Ai} prior to the exogenous
Markov transitions.

3. Apply the exogenous Markov transition matrix Π to obtain Ft+1 as:

Ft+1 = ˆ̃FtΠ
′
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Implementation

I Since cumulative distribution functions are monotone, it is advisable to use
an interpolation routine that preserves monotonicity.

I Both linear interpolation and piecewise cubic hermitian splines have this
property.

I We use the latter to preserve the shape and differentiability of the
distribution function.
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Nonlinear Distributional Dynamics

I For simplicity, consider the discretized Kolmogorov forward equation.

I Density is given by the vector f̂ with transition matrix A∗ such that:

f̂t+1 = f̂tA∗. (5)

I Consider a generic perturbation Dt , for example, aggregate shocks or
changes in the mean of the distribution.
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Nonlinear Distributional Dynamics

I The second order derivative of the transition matrix A∗(k, l) is given by

∂A∗(k, l)
∂a∗

k

∂2a∗
k

∂D2
t
+

∂2A∗(k, l)
∂a∗2

k

[
∂a∗

k
∂Dt

]2

, (6)

where a∗
k denotes the optimal policy at gridpoint ak .

I The first effect captures the direct nonlinearity of the policy function.
I The second effect reflects that the Kolmogorov forward equation is in

principle nonlinear in policies.
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Nonlinear Distributional Dynamics of the Histogram Method

I The histogram method constructs A∗, ignoring the exogenous state
transitions for simplicity, as

A∗(k, l) =


1− a∗

k −Al
Al+1−Al

if a∗
k ∈ [Al ,Al+1)

a∗
k −Al−1

Al−Al−1
if a∗

k ∈ [Al−1,Al)

0 else
(7)

I This transition matrix is linear in a∗.

I Therefore ∂2

∂a∗2
k
A∗(k, l) = 0.
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Nonlinear Distributional Dynamics of DEGM

I The second-order derivative of our interpolant ˆ̃F j
t (Ai), has the general form:

∂2 ˆ̃Ft(i , j)
∂D2

t
=

∂ ˆ̃Ft(i , j)
∂A∗

.j

∂2A∗
.j

∂D2
t

+

[
∂A∗

.j

∂Dt

]′
∂2 ˆ̃Ft(i , j)
∂A∗

.j
2

[
∂A∗

.j

∂Dt

]
(8)

I Unlike the histogram method, the second term is nonzero because A∗
.j are

the vectors of the interpolation nodes (and the derivatives are
vector-valued).

I Therefore, the Hessian ∂2 ˆ̃Ft(i,j)
∂A∗

.j
2 is generally nonzero.
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Implementation

I As described in Bhandari et al. (2023), the second term in Equation 8
reflects second-order responses of the distributional dynamics to first-order
changes in the optimal policy.

I Typically the continuous distribution has curvature at these pre-images, A∗
.j ,

hence approximation of ∂2 ˆ̃Ft(i,j)
∂A∗

.j
2 requires a shape-preserving interpolation

method.

I In the paper we extend this analysis to third order.
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Application



Application: Model
Heterogeneous households as in Aiyagari (1994):

max{ct ,kt+1}∞t=0
E

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 = (1+ rt − δt) kt + htwtN
kt+1 ≥ 0

where
I kt households savings
I ht idiosyncratic productivity state, follows Markov process Π(h, h′)
I Zt = {Ft , δt} are aggregate states: cumulative distribution F and shocks δt

Results in policy function kt+1 = k∗(kt , ht | Zt)
I Solve on grid for (k, h) ∈ GkxGh with |Gk | = nk
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Application: Model
Firm problem:

Yt = Kα
t N1−α

wt = (1− α)

(
K
N

)α

rt = α

(
N
Kt

)(1−α)

Equilibrium:
Households and firms optimize given prices such that the capital market clears,
Kt = Et [k], using b · F (b)− a · F (a)−

∫ b
a F (x)dx
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Capital depreciation shock

I δt follows right-skewed distribution and implies aggregate investment risk.

I Mimicks (binomial) disaster risk, as in Levintal (2017).

I Calibrate size and probability of “disaster” as in Barro (2006).

22 / 38



Calibration
Standard calibration following Den Haan et al. (2010)

Parameters Description Value
β Discount factor 0.99
γ Relative risk aversion 2
α Capital share 0.36
δ Depreciation rate 0.025

ρδ Persistence of disaster 0.0
σδ Second moment disaster 0.005
τδ Third moment disaster 0.012

nk gridpoints for k 50-500
nh gridpoints for h 2
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Solving Stationary Distributions

We perform two exercises:
I First, we isolate the quality of the approximation of the distribution by

keeping prices and optimal policies fixed at the benchmark solution
(nk = 500 with DEGM).

I We select a subset of gridpoints from this solution and iterate on the
distribution until convergence for both the histogram method and our
DEGM. (We use piecewise cubic hermitian splines to interpolate the
cumulative distribution function.)

I Second, we solve for the stationary equilibrium, including prices and policies,
which more closely resembles the actual use case.
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Solving Stationary Distributions

Histogram DEGM
nk= 50 100 250 50 100 250

Capital stock 14.33 4.10 1.00 -2.33 -0.59 -0.04
Wealth gini 33.74 13.74 4.79 -2.61 -1.29 -0.25
Time 0.00 0.01 0.02 0.06 0.10 0.18

Note: Values represent percent deviations of solution with nk gridpoints from the
converged solution (DEGM and nk = 500) (given the prices and policies under the
converged solution). Time refers to the computation time in seconds that it takes to
solve for the stationary distribution on a laptop with 16-core, 3.3GHz CPU.
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Comparison of CDFs
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Solving Stationary Equilibrium

Histogram DEGM
nk= 50 100 250 50 100 250

Capital stock 0.33 0.11 0.03 -0.09 -0.02 -0.00
Wealth gini 27.40 11.71 4.29 -0.86 -0.95 -0.26
Time 0.33 0.71 2.40 1.00 1.75 4.16

Note: Values represent percent deviations of solution with nk gridpoints from the
converged solution (DEGM and nk = 500). Time refers to the computation time in
seconds that it takes to solve for the stationary equilibrium on a laptop with 16-core,
3.3GHz CPU.
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Comparison of Histogram Method and DEGM

I DEGM converges to the “true” distribution much faster in the number of
gridpoints, especially for cross-sectional moments.

I For a given number of gridpoints, the histogram method is faster in terms of
computational time, mainly because it does not require iterations to update
the distribution.

I However, for a given accuracy, our method is faster when solving for the
stationary equilibrium.
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Solving Distributional Dynamics with Aggregate Risk

I Extend state-space perturbation techniques from Bayer and Luetticke
(2020) to higher orders (Levintal, 2017; Andreasen et al., 2018).

I Analyze differences in ergodic moments and distributions in second and third
order across both methods.

I Analyze responses to capital destruction shock δt and their state
dependence.
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Impulse Responses

Response to 7.5 p.p. capital depreciation shock (ν1 = 15σδ), perturbations evaluated
at steady state
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Impulse Responses: Nonlinearities

I The first-order solution slightly understates the decline in aggregate capital
and overstates the decline in the Gini coefficient of wealth in response to the
capital depreciation shock.

I Distributional dynamics in this model are nonlinear with respect to
aggregate shocks.

I However, the feedback from inequality to equilibrium prices is modest.

I The histogram method overstates the decline in the capital stock and the
Gini coefficient.
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First-Order Perturbation Solution
Accumulated differences of the impulse responses following a 7.5 p.p. shock to δ.

Histogram DEGM
nk= 50 100 250 50 100 250

Capital stock 5.00 2.40 0.91 1.13 0.23 0.01
Wealth gini 17.93 11.40 2.76 0.60 0.34 0.21
Time 0.01 0.03 0.30 0.01 0.03 0.32

Note: Values represent accumulated (absolute) differences in the responses following a
15-std. shock to δ (over 300 periods) from the first-order solution with nk gridpoints
to the converged solution (nk=500 and DEGM). Values are given as percent
differences to steady state.
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Second-Order Perturbation Solution
Accumulated differences of the impulse responses following a 7.5 p.p. shock to δ.

Histogram DEGM
nk= 50 100 250 50 100 250

Capital stock 11.13 6.98 4.70 10.94 5.44 1.23
Wealth gini 162.03 206.74 229.95 43.46 16.64 0.91
Time (SO) 1.82 13.24 201.42 1.85 13.59 232.04

Note: Values represent accumulated (absolute) differences in the responses following a
15-std. shock to δ (over 300 periods) from the second-order solution with nk
gridpoints to the converged solution (nk=500 and DEGM). Values are given as percent
differences to steady state.
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Impulse Responses: Histogram Method vs DEGM

I First order: IRFs converge to the same limit, but faster convergence with
DEGM.

I Second order: The histogram method fails to approach the “true” solution
as we increase the number of gridpoints. Particularly pronounced for
inequality.
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Comparison of ergodic moments

Steady state Second Order Third Order
Variable Hstgrm DEGM Hstgrm DEGM Hstgrm DEGM
Output 2.95 2.95 -0.2 (0.7) -0.2 (0.7) -0.3 (0.7) -0.5 (0.7)
Capital stock 30.06 30.02 -0.5 (2.2) -0.6 (2.1) -1.0 (2.2) -1.6 (2.1)
Wealth Gini 26.95 23.90 -1.4 (1.3) 2.1 (0.7) 1.8 (1.4) 12.4 (0.6)

Notes: Non-stochastic steady state levels across methods (nk = 100, columns 1-2).
Means and standard deviations (in brackets) across perturbation order and methods, in
percent deviation from non-stochastic steady state (columns 3-6). Moments are
averages of simulated data generated from pruned model dynamics (Andreasen et al.,
2018) for T = 10.000 periods. Depreciation shocks are drawn from normal-inverse
Gaussian distribution F ν(0, σδ, τδ).
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Ergodic Moments: Implications of Aggregate Investment Risk
I As in Angeletos (2007), aggregate investment risk reduces the aggregate

capital stock.

I Substitution effect dominates income effect. Strongest for less wealthy
households who rely more on labor income.

I While a capital depreciation shock itself compresses the distribution of
wealth, the risk of such a shock increases wealth inequality on average.

I The histogram method understates the impact of investment risk on
economic activity and even more so on inequality.
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Relative shift of the density of wealth with aggregate risk
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Conclusion



Conclusion
I DEGM is a novel method for distributional dynamics that is fast, simple,

shape preserving, and captures all nonlinearities.

I Key insight: Exploiting the monotonicity of the optimal policy and the CDF.

I Allows you to solve heterogeneous agent models with an order of magnitude
smaller number of gridpoints and explore aggregate risk with higher order
solutions.

I We find that aggregate investment risk has large effects on inequality. It
increases wealth inequality by hollowing out the middle class.
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