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1 Introduction

A rapidly growing literature studies models with nominal rigidities and rich household hetero-

geneity.1 At the heart of such HANK models are frictions in financial markets, in particular

incomplete insurance against idiosyncratic income shocks, and differences in liquidity across

assets. As a result, households’ responses to uncertainty about the future matter for savings

and portfolio choice. For example, higher uncertainty encourages precautionary savings and

makes illiquid assets less attractive. In equilibrium, an increase in uncertainty lowers the

risk-free rate and raises the premium on illiquid assets.

However, most work on HANK models to date restrict attention to responses to idiosyn-

cratic uncertainty. This is for technical reasons: with expected utility preferences, uncer-

tainty has only second-order effects on utility and choice that are not captured by popular

linear solution methods. Thus, most HANK models do not quantify precautionary savings

or asset premia due to aggregate uncertainty. They also abstract from the effect of aggre-

gate uncertainty on firm decisions. These technical features create a disconnect between the

HANK literature and large bodies of work in macroeconomics and finance that emphasize

time-varying aggregate uncertainty.

This paper develops and estimates a two-asset HANK model with agents who respond to

both idiosyncratic and aggregate uncertainty. We show that such a model is very tractable

when aggregate uncertainty is modeled as ambiguity using multiple priors preferences. Ag-

gregate uncertainty then has first-order effects on utility and is reflected in the equations

for the steady state and linear dynamics, so we can use standard methods to characterize

and estimate our model. There is also a first-order effect of aggregate uncertainty on in-

tertemporal choices by firms. All intertemporal decisions – savings and portfolio choice by

households as well as price and wage setting by firms – are made more cautiously after an

aggregate uncertainty shock.

Our main quantitative result is that aggregate uncertainty shocks generate powerful co-

movement of macroeconomic aggregates and asset prices over the business cycle. In our

baseline estimation, a single shock to ambiguity about TFP jointly explains more than 70%

of cyclical variation in key macroeconomic aggregates as well as in the excess return on capi-

tal and the real interest rate. In contrast, our estimation infers only a modest role for shocks

to idiosyncratic volatility of labor income. Identification comes from the dynamics of invest-

ment: only an aggregate uncertainty shock generates a recession with a strong protracted

investment slump. We also infer an important effect of aggregate uncertainty on asset prices:

the average excess return on capital of 5.5% reflects a sizable uncertainty premium of 3.2%

and a smaller illiquidity premium of 2.3%.

1See the review by Kaplan and Violante (2018) or more recently Auclert et al. (2024).
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Our results are driven by the interaction of aggregate uncertainty and the portfolio fric-

tions of the two-asset HANK model. Higher uncertainty about TFP generates a flight to

safety: rich households who own most capital substitute away from capital towards bonds,

while poor households want bonds for precautionary savings. The resulting decline in in-

vestment and increase in the capital premium is much stronger than in a representative

agent model or even a one-asset HANK model. Indeed, when we shut down heterogeneity or

liquidity frictions in our model, the effect of aggregate uncertainty on investment as well as

the capital premium essentially disappear. Intuitively, when all households own capital, the

precautionary motive tends to stabilize capital demand after an uncertainty shock. Similarly,

higher labor income volatility generates relatively more precautionary savings and less of a

flight away from capital; this makes volatility less suitable as drivers of recessions.

A second key mechanism in our model is cautious price and wage setting by firms and

unions, respectively. Higher uncertainty about TFP means that firm owners worry about

future cost and unions worry about the future marginal product of labor. This worry is a

force that pushes up both prices and wages after an aggregate uncertainty shock. It thus

works against deflationary pressure from lower demand for goods due to precautionary sav-

ings. As a result, recessions triggered by aggregate uncertainty shocks exhibit less deflation

than those triggered by a typical New Keynesian demand shifter. Since uncertainty enters

linearly, we can selectively shut off one or more of the correlated wedges it introduces into

model equations. When we do so for the price and wage Phillips curves, the model pro-

duces a shallow recession with substantial deflation. Interaction of uncertainty with nominal

rigidities is thus another important channel.

Our model builds on the two-asset HANK setup in Bayer et al. (2024). Households

experience uninsurable shocks to labor productivity. They save in liquid, safe nominal bonds

and in illiquid capital with uncertain payoffs. Firms’ price and wage setting and households’

trading of capital are subject to Calvo frictions. The price of capital moves because of

capital adjustment costs. Government policy determines the net supply of nominal bonds

and sets a rule for the nominal short rate. There are two aggregate real shocks, to total factor

productivity (TFP) and to the volatility of labor productivity. We also allow for shocks to

monetary policy and the inflation target.

Households in our model are averse to both risk (uncertainty with known probabilities)

and ambiguity (uncertainty with ”unknown odds”). The Ellsberg (1961) paradox estab-

lished a behaviorally meaningful distinction between the two. It motivated multiple priors

preferences (Gilboa and Schmeidler, 1989) that capture ambiguity via sets of beliefs: agents

evaluate plans as if they hold a worst-case belief that minimizes expected utility. In many

macro and finance applications, responses to both types of uncertainty are qualitatively sim-
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ilar.2 In particular, ambiguity averse agents may take precautionary actions when the future

is more uncertain. They also dislike assets with uncertain payoffs and will hold them only if

compensated by an uncertainty premium. For the purposes of this paper, the advantage of

an ambiguity approach is that equilibria are easier to compute.

Our solution strategy relies on multiple priors preferences with ambiguity in means. We

parameterize belief sets by the mean TFP innovation: it lives in a symmetric interval around

zero, the mean innovation under the true data generating process. The width of the interval,

a measure of ambiguity, is an exogenous stochastic process. It has a positive mean, so

households act as if long run mean TFP lower than actual mean TFP. An uncertainty shock

corresponds to an even wider interval and hence a lower worst case mean. Since households

like to smooth consumption, they save more – precautionary savings here requires only

diminishing marginal utility, not prudence. Moreover, households invest as if the expected

payoff on capital is low, driving down prices. Both effects are about means, and hence have

first order effects.

We discipline the exogenous ambiguity process by a priori bounding its mean to be no

larger than one standard deviation of the TFP innovation under the true DGP. In the long

run, the worst case mean is therefore no worse than a bad scenario that occurs relatively

often along any sample path. The bound serves as a consistency criterion that connects

the true DGP measured by the econometrician to the size of agents’ belief sets. It weakens

the strict criterion of rational expectations – belief sets contain only one belief, namely the

true DGP – but shares the idea that sets should be close to the true DGP, and more so

when observed volatility is low. As discussed in more detail in Ilut and Schneider (2014),

such a consistency criterion is sensible when we want ambiguity aversion to capture cautious

behavior in a world where agents observe repeated regular patterns, such as business cycles.

Our computational approach leverages the fact that the model is observationally equiva-

lent to one with pessimistic expected utility agents. We make the standard assumption that

agents understand the law of motion of the economy, so that any reasoning about endoge-

nous variables follows from that law of motion together with pessimism about exogenous

TFP. In particular, households always behave as if endogenous variables are on a transition

path towards a worst case steady state with low mean TFP. In the ergodic steady state

of the model, in contrast, TFP is constant at its higher true mean. Endogenous variables

nevertheless reflect cautious behavior, since households anticipate the bad transition path.

It follows that steady state and dynamics must always be studied jointly, since dynamics are

crucial to describe worst case beliefs in steady state.

Our estimation strategy is thus designed to identify parameters jointly from long run

2See Ilut and Schneider (2022) for a survey of ambiguity models and their applications.
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moments and business cycle dynamics. Standard HANK models allow a sequential two step

approach. The first step calibrates a steady state without aggregate uncertainty to match

long run moments of household portfolios and the wealth distribution. The second then

uses linearized dynamics around that steady state to build a likelihood for estimation. In

our model, long run moments reflect cautious behavior not only due to idiosyncratic risk,

as in the standard case, but also to aggregate uncertainty, as captured by the anticipated

transition to the worst case. We thus propose a new procedure that iterates between the

steps: in every iteration we first we choose a subset of parameters to match long run moments

and then estimate the remaining parameters from the linearized dynamics.

Our estimation exercise uses six observables: the growth rates of consumption, invest-

ment and hours, the inflation rate, the short nominal interest rate and the return on capital

constructed by Gomme et al. (2011). We work with five shock series and allow for measure-

ment error on the observables. The aggregate uncertainty shock drives the bulk of business

cycle variation in both quantities and real asset prices. Nominal shocks to monetary policy

and the inflation target are important for inflation as well as the nominal interest rate, but

less relevant for other variables. TFP shocks contribute about 25% of variation in investment

and the nominal rate, and much less to movement in other variables.

Households’ response to an aggregate uncertainty shock works along both the savings

and the portfolio choice margin. When households worry about bad times ahead, they save

more for precautionary reasons. Moreover, they substitute away from assets with uncertain

payoff towards safe bonds. In a two-asset HANK model, the relative strength of these forces

differs across the wealth distribution. Since uncertainty about TFP affects both labor and

capital income everyone likes to save more. Portfolio substitution, in contrast, is relevant

only for rich households who actually invest in capital, and not for the poor who hold only

safe bonds. The former households are also affected negatively by a decline in the price of

capital, a feedback effect that amplifies an aggregate uncertainty shock.

Portfolio substitution by rich capital owners implies that investment as well as the capital

premium are more responsive to an aggregate uncertainty shock in a HANK model than in

representative agent (RANK) model. When we consider a RANK version of our model with

otherwise identical parameters, we find that aggregate uncertainty has essentially no effect

on investment and the capital premium. For a representative agent who receives all labor

and capital income, precautionary savings and portfolio choice effects effectively cancel each

other out. With liquidity frictions, in contrast, rich households, substitute away from capital

whereas precautionary savings of the poor flow to bonds. The price of capital falls to open

up a premium on capital to induce rich households to invest.

The magnitude of shocks is identified by the patterns of comovement they generate. The
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special feature of the aggregate uncertainty shock is that it not only works as a typical

(negative) demand shock in a New Keynesian model that jointly lowers quantities and the

interest rate, but also affects the relative attractiveness of capital and bonds. In other

words, it also activates a strong ”investment wedge”, due to portfolio substitution. A shock

to idiosyncratic risk, in contrast, mostly encourages precautionary savings and thus has

weak effects on investment. It plays only a negligible role for business cycle dynamics in

our estimation. Finally, nominal and TFP shocks cannot generate comovement of aggregate

quantities and prices for familiar reasons. As a result, their volatility and impact on the

business cycle is estimated to be relatively small.

Our paper contributes to a recent literature on estimating HANK models, which requires

in particular solving the models sufficiently quickly. Auclert et al. (2021) solve HANK mod-

els in sequence space and use an MA-∞ representation for estimating their dynamics. Bayer

et al. (2024) propose full-information Bayesian techniques for estimation using the mod-

els’ state-space representation. Both methods assume that agents’ actions do not respond

to aggregate uncertainty – instead future movements in aggregate variables are treated as

certainty-equivalent. This is what allows linear representation of the dynamics with stan-

dard risk preferences. Our approach extends Bayer et al. (2024), showing that their optimal

dimensionality reduction and speed can also handle aggregate uncertainty.

There is a large literature on uncertainty shocks in business cycle models (see Fernandez-

Villaverde and Guerron-Quintana (2020) for an overview). In particular, several papers have

highlighted the role of aggregate uncertainty as a demand shock in New Keynesian models

with a representative agent (for example, Ilut and Schneider (2014), Leduc and Liu (2016),

Basu and Bundick (2017), Bhandari et al. (2024)). Ilut and Schneider (2014) is closest to our

paper since they also model aggregate uncertainty as multiple priors. They emphasize that

an aggregate uncertainty shock generates countercyclical labor and discount factor wedges

and can thereby generate comovement of hours, consumption and output. However, their

model struggles to fit the dynamics of investment and they do not match the capital return.

Our HANK model with aggregate uncertainty and liquidity frictions fits investment and the

capital return well since it introduces a quantitatively important investment wedge.3

In our model, the allocation of aggregate uncertainty among heterogeneous investors

matters for asset prices and real activity. This broad theme, which we study in an estimated

HANK model, permeates several other active literatures. First, in many models of financial

markets, bad shocks lower an asset price because they affect precisely those agents who like

3The result is consistent with Berger et al. (2023), who show that labor and discount factor wedges
due to HANK frictions do not contribute much to aggregate fluctuations. Chang et al. (2021) develop a
complementary empirical approach and find that adding cross-sectional data to a VAR model does not affect
the decomposition of US business cycles. Bayer et al. (2024) also find this in a structural HANK model.
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the asset most, including by lowering their wealth.4 Second, in the wake of the financial crisis,

a new class of models studied the role of financial intermediaries as “specialist” investors (for

example, Gertler (2010), Jermann and Quadrini (2012), Brunnermeier and Sannikov (2014),

Brunnermeier and Sannikov (2014), Bocola and Lorenzoni (2023)). More recently, there has

been growing interest in linking valuation and inequality (for example, Kacperczyk et al.

(2019), Gomez (2024), Fernández-Villaverde et al. (2023) or Ilut et al. (2022)).

The rest of the paper is structured as follows. Section 2 introduces the model and

its solution method. Section 3 describes how we estimate the model. Section 4 presents

quantitative results for our baseline HANK model and compares them to a RANK model.

2 Model

Our setup shares technology and asset market frictions as well as the modeling of household

heterogeneity with the two asset HANK environment in Bayer et al. (2024). However, we

replace expected utility preferences by recursive multiple priors utility and add aggregate

uncertainty shocks. In this section, we first lay out the familiar parts of the environment

and then explain how ambiguity aversion affects the objectives of households and firms.

2.1 Technology

There are four sectors of production in this economy, for final goods, intermediate goods,

capital goods and labor services. We now introduce their technologies.

Final goods

Output of a final good Yt is made by competitive firms combining a continuum of inter-

mediate goods Yj,t according to the Dixit-Stiglitz aggregator

Yt =

(∫
Y

η−1
η

jt dj

) η
η−1

,

with elasticity of substitution η. Each of these differentiated goods is offered at price pjt, so

profit maximization and the zero profit condition imply a demand for intermediate good j

Yjt =

(
Pjt
Pt

)−η
Yt; Pt =

[∫ 1

0

P 1−η
j,t dj

] 1
1−η

(1)

where Pt the aggregate price level.

4Panageas (2020) provides an overview of this mechanism, and how it emerges in models of heterogeneous
beliefs, attitude towards uncertainty or access to financial markets.
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Intermediate goods

Each intermediate good is made using capital services ujtKjt and labor Njt with a con-

stant returns to scale production function

Yjt = ZtN
α
jt(ujtKjt)

(1−α) (2)

Uncertainty enters via total factor productivity shocks Zt, described in detail later. Here ujt

is the intensity with which the capital stock Kjt is used. An intensity higher than normal

results in increased depreciation of capital δ (ujt).
5

The producer’s per-period profit function is

ΠF
j,t =

(
Pjt
Pt
−mcj,t

)
yjt (3)

where mcjt is the real marginal cost of firm j. Taking as given demand in equation (1), the

producer minimizes costs, wFt Njt− [rt + qtδ(ujt)]Kjt, where rt and qt are the rental rate and

the (producer) price of capital goods, respectively, and wFt is the real wage the firm faces.

Factor markets are perfectly competitive. Hence, the first-order conditions for labor and

effective capital read

wFt = αmcjtZt

(
ujtKjt

Njt

)1−α

(4)

and rt + qtδ(ujt) = ujt(1− α)mcjtZt

(
Njt

ujtKjt

)α
, (5)

where mcjt is the real marginal cost of firm j. The optimal utilization is given by

qtδ
′ (ujt) = (1− α)mcjtZt

(
Njt

ujtKjt

)α
.

By combining these conditions, marginal costs are constant across firms, mcjt = mct.

The technology to adjust nominal prices Pjt is subject to a standard Calvo (1983) friction

with indexation - nominal prices are indexed to the steady-state level of inflation, where the

latter is defined as πt = Pt/Pt−1, and can be discretionally adjusted with probability 1−λY .

Capital goods

Perfectly competitive capital goods producers take the relative price of capital goods, qt,

5In particular, the depreciation takes the form δ (ujt) = δ0+δ1 (ujt − 1)+δ2/2 (ujt − 1)
2
, which, assuming

δ1, δ2 > 0, is an increasing and convex function of utilization. Without loss of generality, capital utilization
in steady state is normalized to 1, so that δ0 denotes the steady-state depreciation rate of capital goods.
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as given and choose investment It. Their per-period profit function is

ΠQ
t = It

{
qt

[
1− φ

2

(
log

It
It−1

)2
]
− 1

}
(6)

where φ captures the adjustment costs, which equal to 0 in the steady state. Since capital

goods producers are symmetric, for a given path of It aggregate capital evolves as:

Kt = (1− δ(ut))Kt−1 +

[
1− φ

2

(
log

It
It−1

)2
]
It.

Labor services

Workers sell their labor services to a mass-one continuum of unions indexed by j, each

of whom offers a different variety of labor to labor packers who then provide labor services

to intermediate goods producers. Labor packers produce final labor services according to

Nt =

(∫
n̂
ζ−1
ζ

jt dj

) ζ
ζ−1

,

out of labor varieties n̂jt with elasticity of substitution ζ. Cost minimization by labor packers

implies that each variety of labor, each union j, faces a downward-sloping demand curve

n̂jt =

(
Wjt

W F
t

)−ζ
Nt, W F

t =

[∫ 1

0

W 1−ζ
jt dj

] 1
1−ζ

(7)

where Wjt is the nominal wage set by union j and W F
t is the nominal wage at which labor

packers sell labor services to intermediate goods producers.

Given the demand curve in equation (7) and the real wage wt at which they buy labor

from households, the per-period profit function of a union j is

ΠU
j,t =

(
Wjt

Pt
− wt

)
n̂jt (8)

Similar to price setting, the technology to adjust nominal wages Wjt is subject to a Calvo

(1983) friction - nominal wages are indexed to the steady-state level of wage inflation, defined

as πWt = W F
t /W

F
t−1, and can be discretionally adjusted with probability 1− λW .

Due to adjustments costs in investment, pricing and wage setting, the producers of inter-

mediate and capital goods, as well as the unions, will face a dynamic maximization problem.

In particular, as in standard New Keynesian models (eg. Smets and Wouters (2007), Chris-

tiano et al. (2005)), firms choose actions to maximize the present value of their corresponding
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profits. An important input in that valuation is the stochastic discount factor (SDF), which

is the channel through which precautionary behavior might affect firms’ optimal choices. We

detail the SDF construction and its implications in section 2.4.

Technology shocks

The source of aggregate uncertainty in this economy is TFP, through the Zt shocks in

equation (2). We follow common practice in business cycle analysis by assuming that TFP

follows a persistent AR(1) process and let the true data generating process (DGP) be

logZt+1 = (1− ρz) log Z̄ + ρz logZt + εZt+1 (9)

where εZt+1 is an iid normal sequence of innovations with mean zero and variance σ2
z , and Z̄

is the long-run mean. As we detail below, agents observe the state Zt but, different than in

a standard Rational Expectations (RE) model, they are not confident about the conditional

mean of the distribution of the innovations in (9).6

2.2 Household preferences

In modeling the economic structure of the household sector, we first build on the incomplete

markets environment proposed by Bayer et al. (2024). Our key modeling contribution is

then to enrich this economic environment by letting households perceive uncertainty over

aggregate TFP not only just as risk but also as ambiguity (Knightian uncertainty).

Multiple priors utility

Households have preferences over consumption goods and labor. At date t, household i

obtains utility from a composite good

xit = cit −G(hit, n
t
i)

where cit is consumption, nit is labor, G captures the disutility of labor and hit is household

i’s idiosyncratic labor productivity shock. The quasilinear functional form eliminates wealth

effects of labor supply, following Greenwood et al. (1988).7

6See Ilut and Schneider (2014) for a detailed statistical argument underlying such a possible lack of
confidence. In particular, Ilut and Schneider (2014) generalizes the true DGP to non-stationary models
where the innovation

(
logZt+1 − (1− ρz) log Z̄ − ρz logZt

)
has a conditional mean µ∗

t that is deterministic
and unknown to agents. To an observer who samples TFP data from that process, the sequence µ∗

t thus
cannot be learned: even with a large amount of data, it is impossible to disentangle the parameter sequence
µ∗ and the shock sequence εZ .

7The assumption of GHH preferences is motivated by the fact that estimated DSGE models typically find
small aggregate wealth effects in labor supply; see, e.g., Schmitt-Grohé and Uribe (2012); Born and Pfeifer
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Household i’s information set includes all aggregate exogenous variables of the model as

well as the idiosyncratic shock hit. We introduce ambiguity via sets of one-step-ahead con-

ditional distributions. Let Pt denote the set of probabilities relevant at date t for computing

conditional moments of random variables at t+ 1. The set Pt is itself a random variable. A

larger set after some history describes an agent who is less confident about assigning proba-

bilities to events at date t+1, perhaps because she has only poor information. The evolution

of ambiguity is thus described by an entire stochastic process of belief sets. In particular,

uncertainty shocks correspond to expansions of the set.

Fix a specific consumption plan C, that is, a collection of stochastic processes (cit, nit)

and hence also xit. We would like to to describe continuation utility after any history under

ambiguity. We write Ep
t for the conditional expectation taken under the one-step-ahead

probability p ∈ Pt. The utility process for the consumption plan C is then defined as the

solution to the stochastic difference equation

UC
t = u(xit) + βmin

p∈Pt
Ep
t

[
UC
t+1

]
, (10)

where the discount factor β is between zero and one. Utility at date t is the sum of felicity

from the current composite u(xit) and discounted expected continuation utility, where the

expectation is taken under the worst case conditional distribution for that plan C. For an

agent who perceives more ambiguity, the worst case for each plan is more pessimistic – this

is how the model captures cautious evaluation of plans.

The multiple priors functional form (10) captures a strict preference for knowing prob-

abilities, and is thus consistent with behavior exhibited in the Ellsberg (1961) experiments.

The key feature is that the worst case belief endogenously varies with, the consumption

plan Ci.
8 In the special case where every Pt contains only a single conditional probability,

the difference equation can be solved forward and the solution is standard time-separable

expected utility. The recursive definition ensures that preferences share the dynamic consis-

tency property of expected utility even under ambiguity (see Epstein and Schneider (2003)

for axiomatic foundations). The primitives of the utility representation are the functions u

and G), the discount factor β, and the process Pt (st). We assume that there is no ex-ante

preference heterogeneity, and thus let these utility primitives be common across households.

(2014). Using GHH preferences is not important for introducing ambiguity - for that, we can alternatively
use King et al. (1988) (KPR) preferences.

8See Ilut and Schneider (2022) for a recent review of the multiple priors model and its applications in
macro and finance.
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Belief sets and uncertainty shocks

Reflecting their lack of confidence in the conditional distribution of TFP in (9) as am-

biguous, we let agents entertain a family of conditional distributions with different means.

In particular, we now parameterize the one-step ahead belief sets Pt over TFP as an interval

of means

logZt+1 = (1− ρz) log Z̄ + ρz logZt + µt + εZt+1; µt ∈ [−at, at] (11)

where εZ is normal with mean zero and variance σ2
z . When at is higher, there is more

ambiguity and the set of belief is larger – in particular, a wider interval implies a lower worst

case mean.

The stochastic process at captures agents’ perceived ambiguity about TFP; it evolves as

log at = (1− ρa) log ā+ ρa log at−1 + εat (12)

with long run mean ā > 0, persistence 0 < ρa < 1, and εat ∼ i.i.d N(0, σa) .

We model here at as an exogenous persistent process, interpreted as the cumulative effect

of news that affect confidence. In some periods, such information gathering leaves them

relatively confident that the correct forecast of future TFP logZt+1 is (1−ρz) log Z̄+ρz logZt.

In other periods, various pieces of information might contradict each other, and agents are

less confident about their forecast. Periods of low at < ā represent unusually low ambiguity

about future productivity, whereas at > ā describes periods of high uncertainty.

As in a standard RE economy, in our model uncertainty over aggregate TFP matters

for intertemporal decisions for two sets of economic agents. On the one hand, households’

optimal choices of investment into bonds and into capital are made under uncertainty. On the

other hand, due to the adjustments costs in investment, pricing and wage setting introduced

in section 2.1, the firms’ optimal choices become forward-looking and dynamic. Formally,

those choices may be affected by uncertainty due to the stochastic discount factor used to

evaluate the firms’ future profits. Next we discuss how our assumed ambiguity, as a particular

form of uncertainty, impacts both of these type of agents. Critically, these effects show up

even in a log-linearized equilbrium.

2.3 Household heterogeneity and incomplete markets

We first turn attention to the household side.

Household heterogeneity

As in Bayer et al. (2024), the household sector is subdivided into two types of agents:

workers and entrepreneurs. The transition between types is stochastic. Only workers supply
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labor and face idiosyncratic labor productivity risk. This productivity evolves as9

hit =


exp

(
ρh log hit−1 + εhit

)
with probability 1− ζ if hit−1 6= 0,

1 with probability ι if hit−1 = 0,

0 else.

(13)

With probability ζ households become entrepreneurs (h = 0). Both workers and en-

trepreneurs rent out physical capital. Entrepreneurs earn all pure rents, except those of

unions which are equally distributed across workers. With probability ι an entrepreneur

returns to the labor force with median productivity.

Idiosyncratic shocks εhit are normally distributed with mean zero and variance σ̄2
h,t. These

variance shocks capture changes in the idiosyncratic risk faced by households. We let this

this income risk follows a log-AR(1) process

log σ̄2
h,t+1 = (1− ρh) log σ̄2

h + ρh log σ̄2
h,t + εσt (14)

where σ̄2
h is the steady state income risk, and εσt ∼ i.i.d N(0, σσ). Thus, that at a given time

t households know that there is an aggregate change in the variance of shocks that drive

their next period’s idiosyncratic productivity. This type of variation in income risk allows

us to study within the same model changes to aggregate uncertainty, through at, and to

idiosyncratic uncertainty, through σ̄2
h,t.

Budget constraint

All households self-insure against the income risks they face by saving in a liquid nominal

asset (bonds) and a less liquid asset (capital). Given income, which we detail more in

Appendix A, households optimize intertemporally subject to their budget constraint

cit + bit+1 + qtkit+1 = bit
Rit
πt

+ (qt + rt)kit + (1− τ)(wthitnit + Ihit=0ΠF
t + Ihit 6=0ΠU

t ) +Lt (15)

where τ is the tax rate and Lt are lump-sum transfers. The profits for firms ΠF
t = (1−mct)Yt

go to entrepreneurs, and the profits of unions ΠU
t = (wFt − wt)Nt go to workers. Real liquid

assets is bit, while kit is the amount of illiquid assets, qt is the price of these assets and rt is

their rental rate. Here Rt is the nominal interest rate on liquid assets, while the borrowing

rate, i.e. when bit < 0, is higher by a constant R̄. Borrowing constraints take the form of an

exogenous debt limit B on bond holdings bit+1 and non-negativity on capital holdings kit+1.

Households make their savings and portfolio choice between liquid bonds and illiquid

9We divide by the cross-sectional average,
∫
hitdi, so that average worker productivity is constant.
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capital in light of a capital market friction that renders capital illiquid because participation

in the capital market is random and i.i.d. In particular, only a fraction, λ, of households are

selected to be able to adjust their capital holdings in a given period. Households that do

not participate in the capital market (kit+1 = kit) still obtain dividends and can adjust their

liquid asset holdings. For the portfolio choice, an important factor is therefore the capital

premium, defined as the ex-post real excess return between the illiquid and liquid asset as

Premt =
rt + qt
qt−1

− Rt

πt
(16)

Value functions

Since a household’s saving decision—(b′a, k
′) for the case of adjustment and (b′n, k) for non-

adjustment—will be some non-linear function of that household’s wealth and productivity,

inflation and all other prices will be functions of the joint distribution, Θt, of (b, k, h) in

t. This makes Θ a state variable of the household’s planning problem and this distribution

evolves as a result of the economy’s reaction to aggregate shocks. We can summarize all

effects of aggregate state variables, including the distribution of wealth and income, by

writing the dynamic planning problem with time-dependent continuation values. We also

note in particular that the exogenous aggregate TFP shocks Zt and time-varying ambiguity

at are also part of what determines the time-dependency of these continuation values.

This leaves us with three functions that characterize the household’s problem: value

function V A for the case where the household adjusts its capital holdings, the function V N

for the case in which it does not adjust, and the expected continuation value, W, over both,

V A
t (b, k, h) = max

b′A,k
′

{
u[x(b, b′A, k, k

′, h)] + β min
µ∈[−a,a]

Eµ
t Wt+1(b′A, k

′, h′)

}
(17)

V N
t (b, k, h) = max

b′N

{
u[x(b, b′N , k, k, h)] + β min

µ∈[−a,a]
Eµ
t Wt+1(b′N , k, h

′)

}
(18)

Maximization is subject to the corresponding budget constraint in (15). The continuation

value W averages over V A and V N , using the exogenous probability of adjusting or not:

Wt+1(b′, k′, h′) = λV A
t+1(b′, k′, h′) + (1− λ)V N

t+1(b′, k′, h′) (19)

Worst-case belief

As in the generic multiple priors representation in (10), continuation utility is evaluated

under a set of one-step ahead beliefs. Equation (11) parameterizes this set as an interval

of means, µ ∈ [−a, a] over future Z ′, where the process for ambiguity, a, is given by (12).
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Ambiguity is a state variable as agents internalize its evolution and effect on values.

Intuitively, a negative aggregate TFP innovation decreases the available resources and

thus overall surplus in the economy. Individually, through equilibrium prices, this impacts

negatively the available labor, capital and profit income sources of agents, to the extent

that conditional on individual state variables, including whether the household is a worker

or an entrepreneur, or whether she can adjust capital holdings or not, her current value

function depends positively in equilibrium on the aggregate TFP state. It is then natural

to conjecture that cautious agents worry by behaving as if innovations to future aggregate

TFP are low. That is, we guess that the worst-case belief that supports the optimal choices

in equations (17) and (18) after every history, given endogenous equilibrium prices, is that

future aggregate TFP has the lowest conditional mean out of the set, i.e.

µ∗t = −at,∀t (20)

The worst-case conditional belief over future TFP is therefore:

E∗t logZt+1 = (1− ρz) log Z̄ + ρz logZt − at (21)

where we denote the conditional expectation under the guessed worst case belief by E∗t . If

the guess is correct, then agents’ equilibrium decision rules are the same as in a model with

a fixed conditional belief given by E∗t . We verify our guess by checking that the equilibrium

value functions, i.e. implied by the optimal choices supported by that belief, are indeed

increasing with the innovation to aggregate productivity.

Households also need to make forecasts about the cross-section distribution Θt+1 over

individual states (b′, k′, h′). Agents hold model consistent beliefs, by correctly understanding

how this distributions evolves as

Θt+1(b′, k′, h′) = λ

∫
b′=b∗A,t(b,k,h),k′=k∗t (b,k,h)

Φt(h, h
′)dΘt(b, k, h) (22)

+ (1− λ)

∫
b′=b∗N,t(b,k,h),k′=k

Φt(h, h
′)dΘt(b, k, h)

Φ(·) is the exogenous transition probability for idiosyncratic productivity h in equation (13),

and b∗A/N,t and k∗t are the time-t optimal policies derived under the worst-case belief E∗t .

Using standard insights in the literature, and in particular following Reiter (2009), the

discretized version of equations (17), (18), (19) and (22) can then be viewed as a set of

equations that pins down the dynamics of the value functions and optimal policy for each

b× k × h node as well as the transition of the mass of households at each of the nodes.
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A model variant with a representative household and complete markets

We briefly introduce a model variant with the same structure of ambiguity but with

complete markets, which we will use as a comparison in some of our quantification. There

all households are homogeneous with equal and constant labor productivity hi = 1 and

equally obtain all profit incomes. We maintain the same multiple priors utility and primitive

ambiguity over aggregate TFP. Since that was common to all agents in the baseline economy,

it applies directly to the representative household in this model variant.

The planning problem can be described by the consumption Euler equation for bonds

instead of the above mentioned set of equations. For an optimal consumption-savings policy,

uc(xt) = βE∗t
Rt

πt+1

uc(xt+1)

needs to hold, replacing (17), (18) and (19). Here xt = ct − G(nt) is the composite

consumption-leisure good for the representative houshold and E∗t is the same conditional

expectation based on the worst-case belief in (20).

The law of motion for the distribution (22) is replaced by the wealth accumulation equa-

tion given by the budget constraint

ct + qtKt+1 +Bt+1 = Rt
πt
Bt + (qt + rt)Kt + (1− τ)(wthitnit + ΠU

t + ΠF
t ) + Lt, (23)

and the consumption Euler equation for capital

uc(xt) = βE∗t
qt+1 + rt+1

qt
uc(xt+1), (24)

which then yields the optimal portfolio combination of K and B given return expectations.

2.4 Firms’ forward-looking problems

As in standard RE models, firms in our economy solve intertemporal profit maximization

problems due to the technological adjustment frictions introduced in section 2.1. Uncer-

tainty can matter through the assumed stochastic discount factor used in these decisions. In

particular, we let M t
0 denote the t-period ahead stochastic discount factor (SDF) as of date

0 used by a given firm to compute the expected value of its future profits.

In a representative agent model, or one with effectively complete markets, the SDF M t
0

used for any firm intertemporal decision would be unique, reflecting the (as if) representative

agent’s preferences. In an incomplete markets model however, it is generally not immediate

how to pick M t
0– it involves taking a stand on how different agents’ preferences are aggregated
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to determine what a given firm does. A typical approach in the quantitative business cycle

literature to deal with this difficulty is to observe that when uncertainty is assumed to

equate risk (i.e. agents are SEU maximizers), fluctuations in the stochastic discount factors

would be irrelevant up to log-linearization. Under linearity, that approach then makes the

simplifying assumption that the firm sector is run by managers that are risk neutral. As

with a SEU representative agent, risk would then not matter for firms’ decisions.10

Our model addresses the challenge of SDF formation for firms’ decision while maintaining

a role for aggregate uncertainty in those decisions even under log-linearization. In particular,

we show how under log-linearization the firms’ intertemporal optimality conditions can be

described as if they are owned by a risk-neutral owner evaluating the uncertain future under

the worst-case conditional mean in equation (20).

As if risk neutral owner with the worst-case belief

Given the various types of producers in this economy, we develop the argument with

more general notation. Consider a firm that faces states st and chooses actions xt to solve

max
x

E

[
∞∑
t=0

M t
0Π (xt, xt−1, st)

]

where Π is profits and s collects aggregate state variables (both exogenous and endogenous)

and M t
0 is a t-period ahead stochastic discount factor as of date 0 applicable to this firm.

Assuming usual regularity conditions, the optimal xt choice follows from the firm’s FOC

0 = Π1 (xt, xt−1, st) + Et [Mt+1Π2 (xt+1, xt, st+1)]

where Mt+1 ≡ M t+1
0 /M t

0 is the one period ahead SDF and Πj is the gradient with respect

to the jth argument (possibly a vector). We note that in models where past actions matter

only because of adjustment costs, we typically have Π2 (x, x, s) = 0 at the steady state. This

indeed holds for the problems facing firms in section 2.1.

Without loss of generality, we assume that the firm’s SDF takes the form

Mt+1 = βξt+1M̃ (st, st+1)

where M̃ (st, st+1) is the weighted average of agents’ risk-based component, capturing state

price variation from reasons other than ambiguity. There are two key components of Mt+1

that are common across agents: the discount factor β and ξt+1, the Radon-Nikodym-derivative

10See Carceles-Poveda and Coen-Pirani (2010) and Gornemann et al. (2021) for some discussion and
approaches.
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(”change of measure”) of the common worst-case-belief p∗t (st, st+1) of the agents with respect

to the econometrician’s belief p0
t (st, st+1) (given by (9))

ξt+1 ≡
dp∗t (st, st+1)

dp0
t (st, st+1)

To be more precise, since the TFP innovation εZt is continuous, and the only difference

between conditional distributions is the mean shifter, there exists a positive stochastic pro-

cess ξt+1 adapted to the agent’s information set with Et [ξt+1] = 1 such that E∗t [Yt+1] =

Et [ξt+1Yt+1] for any random variable Yt+1. The adjustment ξt+1 can therefore be thought of

as a ratio of densities that shifts relatively more weight to states of the world that offer low

utility value to the agent.

Let s∗ denote the worst case steady state value of the state. The worst case steady state

action of the firm thus solves

0 = Π1 (x∗, x∗, s∗) + βM̃∗Π2 (x∗, x∗, s∗)

Consider the loglinearized FOC. Denote by Π∗i the 1st and by Π∗ij the 2nd derivative of

profits evaluated at the worst case steady state, that is, Π∗ij = Πij (x∗, x∗, s∗). We get

0 = Π∗11x̂t−1 + Π∗12x̂t +
(

Π∗13 + βΠ∗2M̃1

)
ŝt+

+ β
[
Π∗21M̃

∗Etξt+1x̂t+1 + Π∗22M̃
∗x̂t +

(
Π∗23M̃

∗ + Π∗2M̃
∗
2

)
Et (ξt+1ŝt+1)

]
where M̃∗ and M̃∗

i are the level and i-th derivative of M̃ at the worst case steady state.

We now have a difference equation that relates actions to shocks, but with expectations

formed using the worst case belief. Like with households, this is what captures precautionary

behavior by the firm.

Further simplification is possible when Π∗2 = 0. We then have

0 = Π∗11x̂t−1 + Π∗12x̂t + Π∗13ŝt + βM̃∗ [Π∗21Etξt+1x̂t+1 + Π∗22x̂t + Π∗23Et (ξt+1ŝt+1)] (25)

Equation (25) indicates that variation in uncertainty matters through ambiguity, while

the standard risk-based M̃t+1 component does not matter up to first order. Instead, the latter

component matters only through its steady-state level, by affecting the effective discount

factor βM̃∗. We follow a standard convention in the literature and set M̃∗ = 1 (see eg.

Bayer et al. (2024)) so that the firms’ effective discount factor is the primitive β.

Leveraging our earlier notation of conditional expectations under the worst-case beliefs
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as E∗t , i.e. the change of measure ξt+1, means equation (25) then becomes

0 = Π∗11x̂t−1 + Π∗12x̂t + Π∗13ŝt + β (Π∗21E
∗
t x̂t+1 + Π∗22x̂t + Π∗23E

∗
t ŝt+1) (26)

Equation (26) shows that the log-linearized optimality conditions are the same as if the

firm is held by a risk-neutral manager with the same common worst-case belief as the agents

in the economy.

Firms’ log-linearized optimality conditions

In the economy described in section 2.1, there are three types of firms that make intertem-

poral decisions - the intermediate good producers, capital goods producers and unions, with

per-period profit functions given by equations (3), (6) and (8), respectively. As detailed

above (see equation (26)), the log-linearized optimality conditions for these intertemporal

decisions maintain a role for precautionary behavior for firms through the worst-case belief

embedded in firms’ SDF.

In particular, consider first the intermediate goods sector, where a firm j chooses its

nominal prices to maximize the present value of future profits

E0

∞∑
t=0

M t
F,0λ

t
Y (1− τL)Y 1−τP

t

{(
pjtπ̄

t

Pt
−mct

)(
pjtπ̄

t

Pt

)−η}1−τP

,

with indexation to steady-state inflation π̄. Here M t
F,0 is a SDF that can be specific to the

firm sector. The corresponding first-order condition for price setting implies a Phillips curve

log
(πt
π̄

)
= βE∗t log

(πt+1

π̄

)
+ κY

(
mct − 1

µY

)
, (27)

where we dropped all terms irrelevant for a first-order approximation and defined κY =
(1−λY )(1−λY β)

λY
where µY = η

η−1
is the target markup. This Phillips curve is an example of the

more general equation (26), where we note again that expectations over a future endogenous

variable, inflation, are formed under the worst-case belief E∗t .

A similar Phillips curve under ambiguity obtains for wage inflation. In particular, given

a stochastic discount factor M t
U,0, a union j chooses nominal wages to maximize

E0

∞∑
t=0

M t
U,0λ

t
w

W F
t

Pt
Nt

{(
Wjtπ̄

t
W

W F
t

− Wt

W F
t

)(
Wjtπ̄

t
W

W F
t

)−ζt}
,

where nominal wages that do not get re-optimized get indexed to steady-state π̄W . Since all

unions are symmetric, we focus on a symmetric equilibrium and obtain the linearized wage

18



Phillips curve from the corresponding first-order condition as follows, leaving out all terms

irrelevant at a first-order approximation around the stationary equilibrium

log
(
πWt
π̄W

)
= βE∗t log

(
πWt+1

π̄W

)
+ κw

(
mcwt − 1

µW

)
, (28)

with πWt being wage inflation, mcwt = wt
wFt

is the actual and 1
µW

= ζ−1
ζ

being the target mark-

down of wages the unions pay to households, Wt, relative to the wages charged to firms, W F
t

and κw = (1−λw)(1−λwβ)
λw

.

Finally, the representative capital goods producer chooses optimal investment It to max-

imize the expected present value of profits given by

E0

∞∑
t=0

M t
Q,0It

{
qt

[
1− φ

2

(
log

It
It−1

)2
]
− 1

}

where M t
Q,0 is the stochastic discount factor relevant to the capital goods sector. Optimality

of the capital goods production requires (again dropping all terms irrelevant up to first order)

qt

[
1− φ log

It
It−1

]
= 1− βE∗t

[
qt+1φ log

(
It+1

It

)]
, (29)

and each capital goods producer will adjust its production until (29) is fulfilled.

Put together, the firms’ optimality conditions take the usual form familiar from standard

linear RE models. The difference here is that aggregate uncertainty affects optimal choices

and equilibrium outcomes through the conditional worst-case belief, common to all agents.

2.5 Government

We close the description of the economy with the government sector. The monetary authority

controls the nominal interest rate on liquid assets, while the fiscal authority issues government

bonds to finance deficits, chooses both the average tax rate in the economy and the tax

progressivity, and makes expenditures.

We assume that monetary policy sets the nominal interest rate following a Taylor-type

(1993) rule with interest rate smoothing:

Rt+1

R̄
=

(
Rt

R̄

)ρR ( πt
π∗t

)(1−ρR)θπ ( Yt
Yt−1

)(1−ρR)θY

εRt . (30)

The coefficient R̄ ≥ 0 determines the nominal interest rate in the steady state. The coeffi-

cients θπ, θY ≥ 0 govern the extent to which the central bank attempts to stabilize inflation
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and output growth, Yt
Yt−1

. The parameter ρR ≥ 0 captures interest rate smoothing.

Two standard sources of shocks enter the Taylor rule. First, a monetary policy shock:

log εRt = ρεR log εRt−1 + εRt (31)

where εRt ∼ i.i.d. N(0, σR). Second, an inflation target shock

log π∗t = (1− ρπ) log π̄ + ρπ log π∗t−1 + επt (32)

where επt ∼ i.i.d. N(0, σπ). The two shocks capture disturbances in the Taylor rule that

can be potentially different in their persistence, through the AR(1) parameters ρεR and ρπ,

respectively. Following for example Justiniano et al. (2013), the interpretation and purpose

of the inflation target shock is to account for the low frequency behavior of inflation possibly

generated by the slow moving beliefs and resulting conduct of the monetary authority.

Fiscal policy is implemented through a government spending rule

Gt

Ḡ
=

(
Gt−1

Ḡ

)ρG (Bt

B̄

)−(1−ρG)γGB
(
Yt
Ȳ

)(1−ρG)γGY

(33)

and a rule that governs lump-sum transfers, which get transferred uniformly to all agents:

L̃t
¯̃L

=

(
L̃t−1

¯̃L

)ρL (
Bt

B̄

)−(1−ρL)γLB
(
Yt
Ȳ

)(1−ρL)γLY

(34)

Here policy parameters γGY and γLY control the cyclicality of the two fiscal instruments,

γGB and γLB their adjustment to government debt to ensure debt stability, and ρG, ρL their

mean reversion to the steady state values Ḡ and ¯̃L, respectively. We formulate transfers as

percent of output, Lt = log L̃t Ȳ , and set ¯̃L = 1, i.e. average transfers are zero as we later

calibrate the idiosyncratic income process after transfers.

Total government tax revenues are Tt = τ
(
wtnithit + Ihit 6=0ΠU

t + Ihit=0ΠF
t

)
and govern-

ment debt is determined residually from the government budget constraint:

Bt+1 = Gt + Lt − Tt +RtBt/πt (35)

2.6 Goods, asset, and labor market clearing

The labor market clears at the competitive wage given in (4). The liquid asset market clears

whenever the following equation holds:

Bt+1 = EXSt
[
λb∗a,t + (1− λ)b∗n,t

]
, (36)
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where b∗a,t, b
∗
n,t are functions of the states (b, k, h), and depend on how households value asset

holdings in the future, Wt+1(b, k, h), and the current set of prices (wt, w
F
t ,Π

F
t ,Π

U
t , qt, rt, Rt, πt,

πWt ,Θt,Wt+1). Future prices do not show up because we can express the value functions such

that they summarize all relevant information on the expected future price paths.

Expectations EXSt in the right-hand-side expression are taken w.r.t. the cross-sectional

distribution Θt(b, k, h). Equilibrium requires the total net amount of bonds the household

sector demands, Bd, to equal the supply of government bonds. In gross terms there are more

liquid assets in circulation; some households borrow up to B.

Last, the market for capital has to clear, i.e.,

Kt+1 = EXSt [λkt
∗ + (1− λ)k], (37)

where the RHS defines the aggregate supply of funds from households—both those that trade

capital, λk∗t , and those that do not, (1 − λ)k. Again k∗t is a function of the current prices

and continuation values. The goods market then clears due to Walras’ law, whenever labor,

bonds, and capital markets clear.

When we consider the representative household model, we can think of the RHS of

equations (36) and (37) as simply given by (23) and (24), respectively. In other words, the

representative household model only changes equilibrium conditions in replacing the Bellman

equation and the capital and bonds demand equations, but leaves the entire other model

structure unchanged.

2.7 Equilibrium

A sequential equilibrium with recursive planning under ambiguity in our model is a sequence

of policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }, a sequence of value functions {Wt}, a sequence of

prices {wt, wFt ,ΠE
t ,Π

U
t , qt, rt, Rt, πt, π

W
t , τt}, a sequence of stochastic states {Zt, at, σ̄2

h,t, π
∗
t , ε

R
t }

and shocks {εZt , εat , εσt , επt , εRt }, aggregate capital and labor supplies {Kt, Nt}, distributions Θt

over individual asset holdings and productivity, and expectations for the distribution of

future prices, such that

1. Conditional beliefs E∗t over exogenous variables are formed:

(a) under the worst-case process for aggregate TFP, Zt+1, as in equation (21);

(b) under the true DGP processes for the other exogenous states and shocks.

2. Bellman equations are satisfied:
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(a) Given the functionals E∗tWt+1, formed over the continuation value under the con-

ditional beliefs E∗t , and period-t prices, policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }
solve the households’ recurive multiple priors planning problem; and

(b) Given the policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } and prices, the value functions

{V A
t }, {V N

t } and {Wt} are a solution to the Bellman equations (17), (18), 19).

3. Distributions of wealth and income evolve according to households’ policy functions,

per equation (22).

4. Market clearing: the labor, the final goods, the bond, the capital, and the intermediate

goods markets clear in every period.

5. Policy: interest rates on bonds are set according to the Taylor rule in equation (30)

and fiscal policies are set according to the fiscal rules in equations (33) and (34).

6. Consistency of beliefs:

(a) Beliefs over functions mapping exogenous to endogenous variables are consistent

with actual equilibrium functions.

(b) The worst-case belief for TFP at each period t is the minimizing belief over the

continuation value Wt+1 out of the primitive set in (11).

7. Data simulated under the true DGP draws aggregate TFP Zt from the process in (9).

A Rational Expectations version is a special case of this equilibrium, where the belief set

over TFP is assumed to be a singleton that coincides with the true DGP. There are three

observations to make here. First, under ambiguity, there is a sytematic difference between

the conditional belief that supports optimal choices and the true DGP, as summarized by

points (1.a) and (7). Second, the consistency of beliefs criterion in (6.a) imposes the same

’structural knowledge’ on the part of agents as in RE models: agents are not confident in the

probability distribution of exogenous variables (here aggregate TFP) but have full knowledge

over the equilibrium mappings to endogenous variables. Third, while under RE there is a

single belief, point (6.b) looks to verify that the equilibrium worst-case belief is indeed the

conjectured one in point (1.a), as discussed earlier in section 2.3.

2.8 Solution method

We follow the tradition of Reiter (2009) and solve the household problem globally while

approximating aggregate dynamics by a first-order perturbation. In particular, we build on
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Bayer et al. (2024), whose implementation of the Reiter approach allows for full information

estimation of the model’s dynamics, and extend that framework to ambiguity along the lines

of Ilut and Schneider (2014).

The key advantage of our method is to leverage the property characterizing our model

that ambiguity allows aggregate uncertainty to have first-order effects on decisions, both

in steady state and following changes in uncertainty. This first-order approach also means

that the interaction between the global solution aspect of solving the household problem

and (time-varying) aggregate uncertainty does not add significant computational complexity

to the first-order perturbation solutions in Bayer et al. (2024) or Auclert et al. (2020).

Additionally, Bayer et al. (2024) gives an upper bound on the achievable dimensionality

reduction for first-order solutions and shows how to choose it optimally. These results apply

to our model even though it captures effects of aggregate uncertainty.

The general logic of the method mirrors the equilibrium definition in section 2.7. First,

we solve the model as if it is a RE model in which the worst case scenario expectations

in equation (21) are correct on average. In this step, we compute the equilibrium using a

first-order perturbation. Second, we take the resulting log-linear equilibrium decision rules

formed under ambiguity and then characterize the dynamics under the econometrician’s law

of motion for TFP described by the probabilistic evolution in equation (9).

Log-linearization around the worst-case steady state

The steady state of the log-linearized as if RE model under the worst-case belief can be

computed as a deterministic steady state since agents act as if the economy converges there

in the long run. In this deterministic steady state, TFP equals its long-run value Z∗ under

the worst-case belief in equation (21), given simply by

Z∗ = Z̄ exp

(
−ā

1− ρz

)
, (38)

where ā is the long-run value of ambiguity in equation (12) and Z̄ is the long-run value

under the true process in equation (9). Under the deterministic steady state Z∗, we can

then compute the worst case steady state of the endogenous variables, including the value

functions W(b, k, h) and distributions of individual states Θ(b, k, h). For a simple notation,

denote the collection of all other shocks and endogenous variables as Y. The worst-case

deterministic steady-state is then given by (Z∗,Y∗). With this steady state (Z∗,Y∗) at

hand, we log-linearize the model around it.

At this stage, by solving the as if RE model under the worst-case belief, the computation

builds on techniques developed for expected utility models. In particular, we follow the

method in Bayer et al. (2024) to first compute the stationary distribution under Z∗ and
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thus the collection (Z∗,Y∗), and then the model’s linear dynamics around it. The resulting

solution describes how endogenous variables respond to the state variables, including the

current ambiguity at and current aggregate TFP Zt. Importantly, this response does not

depend on the true DGP in equation (9). Instead it is entirely determined by agents’ (worst-

case) beliefs. Finally, this computation also produces the agents continuation values Wt+1.

These functions can be used to verify, as in step 6 of the equilibrium definition of section 2.7,

the consistency of the worst-case beliefs, given the equilibrium policies and prices derived

under the log-linear approximation.

Ergodic steady state and equilibrium dynamics

To characterize equilibrium dynamics, we combine the equilibrium law of motion derived

under ambiguity in the previous step, and the true DGP. The key step here is to account for

the true DGP in equation (9) being different than agents’ beliefs, by noting that

logZt = E∗t−1 logZt + at−1 + εZt (39)

As described in sections 2.3 and 2.4, the fact that current TFP is on average higher than

the worst-case belief by at−1 is just a manifestation of the change of measure between the

agent’s cautious, worst case conditional beliefs E∗t−1 logZt and the true DGP.

Following the insights of Ilut and Schneider (2014), this change of measure makes aggre-

gate uncertainty have a role in both the model’s steady state and its dynamics around it.

First, the ergodic steady state as measured by the econometrician is the long-run value of

variables when (i) the long-run value of actual TFP in equation (9) equals logZ = log Z̄,

while (ii) variables follow their log-linear equilibrium response to states as determined un-

der ambiguity, as if TFP is on a declining path towards its long-run worst-case value of

logZ∗ = log Z̄ − ā
1−ρz . Following the notation above, we can denote this ergodic steady

state as the collection (Z̄, Ȳ). Second, given the log-linearized equilibrium responses derived

under ambiguity and the law of motion in equation (39), we can then also characterize the

model’s dynamics around this ergodic steady state (Z̄, Ȳ). For example, to describe how the

economy responds to times of higher/lower ambiguity than its steady state value of at = ā.

3 Estimation

The frequency of the model is quarterly. We estimate it using quarterly US data from

1985Q1 to 2019Q4, based on a two-pronged approach. We target average moments over this

period that speak to key portfolio choice and asset pricing moments of the ergodic wealth

distribution. At the same time, we also fit the model to business cycle and asset price
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dynamics. For the latter, we leverage the linearity of the model’s state space representation

and the normality of the shocks to fit the dynamics using standard full-information Bayesian

likelihood methods, as discussed in e.g. Smets and Wouters (2007), Fernández-Villaverde

(2010) and Bayer et al. (2024). In addition to the estimated parameters, we also follow

standard practice in the literature, and set some parameters based on external evidence.

Data used for estimation

We use five average moments that are common in the HANK literature and pin down

the distribution of wealth, as well as the size of the government: the average ratio of capital

to output, capital to government debt, top 10 wealth share, the share of borrowers, and

government spending to output. For the full information likelihood estimation, we include

the following observable time series: the growth rates of per capita hours, private consump-

tion, investment, all in real terms; the log difference of the GDP deflator; and the (shadow)

federal funds rate. Our model is stationary so all growth rates are demeaned. These data

are standard in the estimation of typical DSGE models. In addition, here we use the non-

demeaned capital premium from Gomme et al. (2011) as observable. Since our model has

fewer structural shocks than observables, we allow for iid measurement error in the observa-

tion equation of the state-space representation that links all six observed variables and their

model counterparts. Appendix B.1 lists the data sources.

3.1 Estimation approach

Our estimation approach exploits the tractability of our linear solution method described in

Section 2.8. We use the model’s ergodic distribution to fit the data, along two estimation

objectives. To match average data moments, we use the ergodic steady state (Z̄, Ȳ). To

match the historical path of the observed data in the Bayesian likelihood estimation, we

use the model’s dynamics. Critically, in our model, the ergodic steady-state is in itself a

function of the dynamics. The model parameters generically influence the model’s dynamics

directly or indirectly, through the worst-case steady state approximation point (Z∗,Y∗).

Through dynamics, parameters therefore also affect the ergodic steady state (Z̄, Ȳ). This

makes estimation more challenging and the identification of parameters richer, since they

affect jointly the moment-matching fit and the maximum likelihood score.

In contrast, in linear Rational Expectations DSGE models aggregate uncertainty has no

effects on the long-run values of variables, therefore the ergodic steady state would coin-

cide there with the deterministic one. In that approach, typical in the DSGE literature,

the two estimation objectives (moment matching and likelihood maximization) can thus be
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maximized separately, since dynamics do not matter for the long-run model-implied values.11

Our estimation is nevertheless tractable and we implement it by an iterative procedure

as follows. We isolate the parameters to be estimated that affect the approximation point,

namely the worst-case steady state (Z∗,Y∗). Call this parameter set θSS. Besides standard

parameters that would matter in a representative agent for this steady-state (like the dis-

count factor or government spending etc.), in the HANK model parameters governing the

incomplete markets aspect and the trading friction also matter since they affect the wealth

distribution. We then implement a two-step procedure.

First, conditional on some initial parameter values in θSS, we run a Bayesian maximum

likelihood estimation for the rest of the parameters. For each parameter draw, we thus

avoid the costly re-solving of the approximation point (Z∗,Y∗), which involves the rich

wealth distribution, and gets fixed at this step. The estimation converges quickly, leveraging

the linearity of the state-space representation. Then, given the posterior mode obtained

in the Bayesian estimation, we can compute the ergodic steady state (Z̄, Ȳ), which we

compare with the counterpart data moments. The second step of the procedure is to adjust

the parameters in θSS to minimize the (equally weighted) moment squared distance. The

procedure then potentially restarts to improve the model fit. Finally, we note that since

parameters affect jointly the model’s distance to the targeted data moments and indirectly

the Bayesian maximum likelihood score, there is no a-priori reason why under the best fitting

parameters the former distance becomes zero.

3.2 Parameters

Our first set of parameters, in Table 1, is set based on external evidence. In particular, we

take the idiosyncratic income process from Storesletten et al. (2004), which gives us ρh = 0.98

and σ̄h = 0.12. Guvenen et al. (2014) gives the probability of a household falling out of the

top one percent of the income distribution in a given year, which we take to be the transition

probability from entrepreneur to worker, ι = 6.25%. We set the relative risk aversion, ξ, to

4, which is common in the incomplete markets literature; see Kaplan and Violante (2014).

We set the Frisch elasticity to 0.5; see Chetty et al. (2011). The steady-state price and

wage mark-ups are both fixed at 10%, following Born and Pfeifer (2014). The labor share

of production, α = 0.68, is determined by the average labor income share (given by η). The

11The main exception and thus similar work to us is models that employ higher-order perturbation, like
Fernández-Villaverde et al. (2011), Fernández-Villaverde et al. (2015). There, similar to us, the equilibrium
is perturbed around the deterministic steady state, and the higher-order terms make aggregate uncertainty
shift the ergodic steady state, which gets compared to data moments, away from the deterministic one. The
difference for us is that this shift occurs in the linear approximation due to change of measure in the actual
process from its worst-case belief to the true process.
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Table 1: Parameters set externally

Par. Value Description Target

Households
ρh 0.980 Persistence income Storesletten et al. (2004)
σh 0.120 Std. income Storesletten et al. (2004)
ι 0.063 Trans. prob. E. to W. Guvenen et al. (2014)
ξ 4.000 Relative risk aversion Kaplan and Violante (2014)
γ 0.500 Frisch elasticity Chetty et al. (2011)

Firms
α 0.680 Share of labor Standard value
δ0 0.025 Depreciation rate Standard value
η̄ 11.000 Elasticity of sub. Born and Pfeifer (2014)
ζ̄ 11.000 Elasticity of sub. Born and Pfeifer (2014)

average quarterly depreciation is δ0 = 0.025.

Estimated parameters

We first introduce the estimated parameters, shown in Table 2, and then in Section 3.3

discuss their estimated values. The first three rows of Table 2 refer to the aforementioned

set θSS of parameters, which get adjusted in the moment-matching estimation step. We have

five such parameters: the discount factor β, the trading friction λ, the probability to enter

the entrepreneur state ζ, the borrowing wedge R̄, and the tax rate τ . Table 3 lists the target

moments and the model-implied ones. We discuss their interpretation in Section 3.3.

The rest of Table 2 comprises the remaining parameters, which get estimated via Bayesian

likelihood and for which we report the prior and posterior credible intervals. We now detail

the prior construction. Following Justiniano et al. (2011), we impose a Gamma distribution

with prior mean 5.0 and standard deviation 2.0 for δ2/δ1, the elasticity of marginal depreci-

ation with respect to capacity utilization, and a Gamma prior with mean 4.0 and standard

deviation 2.0 for the investment adjustment costs parameter, φ. For the slopes of the price

and wage Phillips curves, κY and κw, we assume Gamma priors with mean 0.10 and standard

deviation 0.03, corresponding to contracts with an average length of four quarters.

For monetary policy, we estimate the Taylor rule responses to inflation and output growth,

θπ and θY . We impose Normal distributions with prior means of 1.7 and 0.13, respectively.

We allow for interest rate smoothing with the parameter ρR. We assume a Beta distribution

with parameters (0.5, 0.2). For fiscal policy, we estimate the response of government spend-

ing and transfers to government debt deviations and output growth. We impose Gamma

distributions to ensure debt stabilization and countercyclical responses of both rules.

Following Smets and Wouters (2007), the autoregressive parameters of the shock processes

27



Table 2: Estimated parameters

Parameters θSS estimated by moment-matching

Parameter Value Parameter Value

β 0.977 λ 0.073
ζ 6.0E-4 R̄ 0.044
τ 0.260

Parameters Estimated by Bayesian Estimation

Parameter Prior Posterior Parameter Prior Posterior

Frictions and Ambiguity Shocks

δs Gamma(5, 2) 6.036 ρZ Beta(0.5, 0.2) 0.945
(6.006, 6.064) (0.930, 0.959)

φ Gamma(4, 2) 0.561 ρA Beta(0.5, 0.2) 0.963
(0.366, 0.806) (0.948, 0.975)

κ Gamma(0.1, 0.03) 0.046 σA Inv.-Gamma(0.5, 0.25) 90.879
(0.031, 0.065) (68.496, 120.78)

κw Gamma(0.1, 0.03) 0.101 ρS Beta(0.5, 0.2) 0.496
(0.069, 0.137) (0.325, 0.670)

z̃ Beta(0.99, 0.01) 0.972 σS Inv.-Gamma(0.5, 0.25) 22.182
(0.966, 0.978) (15.366, 30.374)

Monetary Policy Fiscal Policy

ρR Beta(0.5, 0.2) 0.171 ρG Beta(0.5, 0.2) 0.181
(0.060, 0.316) (0.042, 0.422)

θπ Normal(1.7, 0.3) 2.202 γGB Gamma(1.0, 0.2) 0.806
(1.996, 2.435) (0.611, 1.030)

θY Normal(0.13, 0.05) 0.075 γGY Gamma(1.0, 0.2) 0.954
(0.048, 0.102) (0.684, 1.253)

ρεR Beta(0.5, 0.2) 0.553 ρL Beta(0.5, 0.2) 0.361
(0.344, 0.686) (0.102, 0.687)

σεR Inv.-Gamma(0.1, 2.0) 0.136 γLB Gamma(0.2, 0.2) 0.206
(0.113, 0.175) (0.155, 0.263)

ρεπ Beta(0.5, 0.2) 0.948 γLY Gamma(0.2, 0.2) 1.044
(0.929, 0.985) (0.865, 1.222)

σεπ Inv.-Gamma(0.1, 2.0) 0.045
(0.045, 0.045)

Notes: The table displays the set of parameters estimated through moment-matching and Bayesian likelihood
estimation, respectively. For the latter we show their prior distribution and posterior means. The 90%
credible intervals are shown in parentheses. Posteriors are obtained by an MCMC method. The standard
deviations have been multiplied by 100 for better readability.

are assumed to follow a Beta distribution with mean 0.5 and standard deviation 0.2 for

TFP and a standard deviation of 20 for ambiguity and idiosyncratic risk.12 The standard

deviations of the shocks follow Inverse − Gamma distributions with prior mean 0.1% and

standard deviation 2%, again 20% for ambiguity and idiosyncratic risk.

12The prior for ambiguity is consistent with estimates in Ilut and Schneider (2014).
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Estimating steady-state ambiguity

For steady state ambiguity, we find it convenient and informative to estimate the ratio

of the long run value of TFP under the worst-case belief relative to the true process. Using

equation (38), this ratio, denoted by z̃, is

z̃ ≡ Z∗

Z̄
= exp

(
−ā

1− ρz

)
(40)

In standard Rational Expectations models the long-run value Z̄ is usually normalized to

a simple constant, for example Z̄ = 1. We instead normalize the long-run value under the

worst-case belief Z∗ which controls the worst-case deterministic steady state. This allows us

to avoid re-solving the approximation point (Z∗,Y∗) in the Bayesian likelihood. In particu-

lar, we can normalize Z∗ = 1 and estimate the ratio z̃, using for example a Beta distribution

like in Table 2, which imposes z̃ < 1. For a given estimated value of z̃, the implied Z̄ is then

Z̄ = z̃−1 > Z∗ = 1 (41)

The ratio z̃ controls how much the steady-state ambiguity shifts through its change of

measure the steady state away from its worst-case deterministic value (Z∗,Y∗) to the ergodic

steady state (Z̄, Ȳ). When z̃ is small, agents worry about a path towards a low long-run

value of TFP, or put differently, the true one is large compared to that worst-case belief.

The differences in long-run values get mapped in differences in endogenous variables (Y∗ vs

Ȳ) as a function of the model’s dynamics, which we discuss in Section 3.3.

In Table 2 we also estimate the persistence ρz of the TFP process. This parameter gets

partly identified also from the shock dynamics and its effect on the likelihood. Given ρz, the

primitive long-run value ā of the one-step ahead ambiguity is then implicitly estimated by

the ratio z̃ of long-run values.13 Indeed, using the definition in equation (40) we have

ā = −(1− ρz) log z̃ (42)

The one-step ahead ambiguity ā (or equivalently the long-run ratio z̃) is the only new

steady-state parameter introduced by our multiple priors model. To interpret and discipline

its magnitude we refer to Ilut and Schneider (2014), which discuss what sets of models are

consistent with a sample of iid innovations measured by an econometrician. They propose a

bound on the set of one-step ahead mean beliefs that is proportional to the standard deviation

of the innovation measured by an econometrician. The idea is that if an econometrician

13This also makes clear that alternatively we could estimate ā and ρz.
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Table 3: Ergodic moments

Data Ergodic SS Worst-case SS

Estimation moments

Capital to output 9.88 9.87 9.41
Liquid to illiquid 0.20 0.20 0.32
Top 10 wealth 0.67 0.71 0.60
Share of borrowers 0.16 0.16 0.08
Gov. spending 0.22 0.22 0.18
Capital premium (%) 6.06 5.55 2.31

Non-estimation moments

Share of zero-liquidity 0.20-0.30 0.22 0.10

estimates a more volatile process, there is more room for agents’ concern about ambiguity

and hence the interval of means can be wider.

We thus follow the estimation approach in Ilut and Schneider (2014) and look to bound

upwards the parameter ā by one standard deviation σz of the TFP innovation. We find

that in our estimated model this upper bound is tight. In particular, when we estimate

the parameters z̃, ρz and σz independently, the implied ā is significantly larger than σz.

Disciplined by the bound constraint, we the reported results are for a restricted estimation

version where the upper bound is tight and so ā = σz. The latter parameter is thus also

given by equation (42) and does not show up as an additional free parameter in Table 2.

3.3 Estimates and ergodic moments

Aggregate uncertainty matters for our ergodic steady state. We now discuss its implications

and mechanisms. The last column in Table 3 reports model-implied moments in the worst-

case deterministic SS (Z∗,Y∗), while the middle one for the ergodic SS (Z̄, Ȳ). The difference

between these moments identifies the role of aggregate uncertainty.

Consider the first five rows of moments. These are the targeted moments in the moment-

matching part of our estimation. The values of the five parameters, θSS in Table 2, are

primarily responsible for fitting these moments, given the posterior mode of the Bayesian

estimation. These moments get fit very well in the ergodic SS. The sixth moment, the average

capital premium, is part of the Bayesian likelihood estimation since capital premium is an

observable. The model-implied premium, at 5.55%, is close to the sample average of 6.06%.

Finally, the last row presents a moment that was not part of the estimation at all, namely

the share of agents with zero-liquidity, which the model also gets close to.

We emphasize two key parameters in shaping the ergodic moments. The first is the
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estimated value of the trading friction, as a probability λ = 7.3% of accessing the capital

market. This parameter is of particular importance for the two-asset HANK literature. The

trading probability comes in actually higher (i.e. the friction is lower) than the corresponding

value of 6.2% in the earlier work of Bayer et al. (2024), which does not feature aggregate

uncertainty. The second is the steady-state amount of ambiguity, which gets estimated

within the Bayesian estimation step. From Table 2, the posterior value of the ratio z̃ is

0.973, meaning that under the worst-case belief the long-run TFP is about 2.7% lower than

under the true process. The one-step ahead estimated ambiguity, using equation (42), can

be read as ā = 0.0015. Interestingly, this value is about half of the corresponding estimate

of ā in the representative business cycle model of Ilut and Schneider (2014).

Ergodic steady state effects of aggregate uncertainty

There are two fundamental mechanisms through which aggregate uncertainty affects these

moments. One is precautionary savings and the other is an increase in the uncertainty-

adjusted return on capital. These effects occur since agents act as if the economy is on a path

towards a lower long-run value of TFP. Therefore, agents (i) engage in more precautionary

savings, and (ii) simultaneously require a higher equilibrium compensation for holding the

uncertain capital.

We see these two forces at work in Table 3. First, the precautionary savings mechanism

leads agents to invest in more capital, increasing the capital to output. In addition, the

portfolio choice between liquid government debt and the less liquid capital gets shifted in

equilibrium towards the latter, reducing the ergodic liquid/illiquid asset ratio. The shift oc-

curs as aggregate uncertainty leads agents to increase demand for both assets to save in, but

the supply of capital is effectively more elastic in steady state than that of the government

debt - the latter being determined by the steady-state government budget constraint of equa-

tion (35). At the same time, the same precautionary savings force reduces the equilibrium

real rate, which doubles the ergodic share of borrowers compared to the deterministic SS.

Second, in the ergodic steady state the investors’ exposure to the aggregate uncertainty

characterizing capital needs to be compensated by a financial excess return over the risk-free

real rate. Our headline result here is that aggregate uncertainty accounts for more than

half of the model-implied ergodic capital premium of 5.55%. In particular, in the worst-case

deterministic SS, where there is no compensation for uncertainty, the premium of 2.31%

reflects only a financial compensation for illiquidity – the only source operating in standard

linear RE HANK models. Instead, in our ergodic SS, the total premium reflects a liquidity

and an uncertainty component. In particular, aggregate uncertainty opens up a premium

that is larger by 3.21% than in the deterministic SS, to account for the total of 5.55%.

The large uncertainty premium also matters for the wealth distribution. In particular,
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following insights in the two-asset HANK literature (eg. Kaplan and Violante (2014), Kaplan

et al. (2018)), a higher premium also increases the share of wealth held by the top 10 percent

by 11 percentage points and increases the share of agents with zero-liquidity, i.e. Hand-to-

Mouth. Indeed, in Table 3 this latter share more than doubles from its deterministic SS

to be 22%, in line with the otherwise untargeted data moment. This channel is important,

as it shows that a model with aggregate uncertainty can produce an empirically relevant

equilibrium premium, which is a key mechanism to generate a relevant share of Hand-to-

Mouth agents, in particular of the wealthy type with illiquid assets.

Finally, consider the remaining parameters in Table 2. These are estimated in our

Bayesian likelihood procedure, and the posteriors get reported using a single RWMH chain

after an extensive mode search. After a long burn-in, 150,000 draws from the posterior are

used to compute the posterior statistics. Appendix B.2 provides details on convergence. We

only briefly comment on the estimated values here. These parameters influence the model’s

dynamics, which we will discuss in detail in the next section. For now, we note that the

parameter estimates for the nominal and real frictions and for the policy rules are broadly

consistent with the literature. We find sizable countercyclical fiscal policy, a strong reaction

of the Taylor rule to inflation, nominal stickiness of around 4 quarters for wages and 5 quar-

ters for prices, and higher frictions in capital utilization than in investment adjustment. In

addition, there are persistent shocks to both the Taylor rule and the inflation target, which

we estimate quite accurately from observations of the policy rate and inflation.

4 Business cycle dynamics

Aggregate uncertainty, modeled here as ambiguity, emerges as the main business cycle driver

in our estimated model. We discuss the model’s empirical fit, response to shocks and mech-

anisms through a series of results.

4.1 Historical fit

We first show how well the model actually fits the data. Figure 1 plots the six observables (the

’Data’ blue lines) against the corresponding historical path implied by our model estimates

(the ’Model’ red lines), computed by a Kalman smoother. The difference between the lines

is the estimated measurement error, which we allowed for each observable. The model does

a good job fitting the business cycle comovement of investment, consumption and hours

growth. Out of these three real variables, the fit is closest for hours growth, since this series

is the most persistent and thus less likely to be generated by measurement error. The model
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(a) Consumption Growth (b) Investment Growth

(c) Hours Growth (d) Inflation

(e) Nominal Rate (f) Capital Premium

Figure 1: Model vs Data: Kalman smoother for the estimated HANK model and the data
used in estimation.
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also closely tracks movements in the another persistent series, namely the nominal interest

rate, and also matches well the business cycle and lower frequency movements in inflation

and the capital premium.

Historical variance decomposition

To understand how our estimated model delivers this fit, we start with investigating the

role played by each shock in a historical variance decomposition exercise. In particular, given

the linearity of the solution, Figure 2 decomposes the overall model fit (red line of Figure 1)

into the specific historical contribution of each shock. In addition, the decomposition also

accounts for the role played by the estimated initial condition (purple component), which is

particularly important for the downward trend in the nominal rate and inflation.

Clearly, the most important shock in driving the historical fit across observables is the

ambiguity one. First, this shock accounts for the historical booms and busts, with strong

comovement in consumption, investment and employment. Second, it accounts especially for

the lower frequency movements in the nominal rate that appear to be driven by the implied

slower moving changes in the real rate. Third, aggregate uncertainty also helps explain

business cycle and lower frequency movements in the historical capital premium. The other

shocks play a more muted role. The exception is the inflation target shocks, which matters

especially for the slow-moving dynamics of inflation and partly of the nominal rate.

4.2 Impulse responses

We use impulse response functions (IRFS) to understand why the ambiguity shock emerges as

the prime business cycle factor driving the positive comovement of consumption, investment

and hours worked, while also significantly contributing to movements in the capital premium.

In particular, Figure (3) plots the IRF to our ambiguity shock in the baseline HANK model

(in solid dark lines). We will later also draw comparisons to a counterfactual RANK model

(in dashed blue lines) that keeps the same parameters but eliminates the incomplete markets

aspects of our economy (recall the discussion in section 2.3 of how this variant is constructed).

The ambiguity shock in the baseline HANK

A loss of confidence over the conditional distribution of aggregate TFP, i.e. a negative

aggregate uncertainty shock, leads in the baseline HANK model of Figure 3 to a recession in

which consumption, investment and employment all fall significantly on impact and remain

persistently depressed. Intuitively, an increase in ambiguity acts like agents receive bad news

about the conditional mean of aggregate TFP. We can decompose the economic effect of this

anticipation along several margins, or, put differently, along several correlated ’wedges’ that

get activated by the ambiguity shock.
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(a) Consumption Growth (b) Investment Growth

(c) Hours Growth (d) Inflation

(e) Nominal Rate (f) Capital Premium

Figure 2: Historical decompositions for the estimated HANK model
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Figure 3: Impulse Responses to an ambiguity shock in estimated HANK model and coun-
terfactual RANK (under the same parameters)

First, this lack of confidence affects the precautionary saving desire of all types of house-

holds - whether households are mostly exposed to aggregate TFP through their labor or

capital income, they now worry that their respective future income streams are lower. This

leads to precautionary saving and a desire to cut consumption and save. Overall, this precau-

tionary effect is a type of ’wedge’ in the Euler equation for saving that resembles the discount

factor taken as a primitive shock in many NK models, with or without heterogeneity.

By itself, this precautionary effect alone can generate comovement between consumption

and labor for standard reasons present in NK models. Namely, due to nominal rigidities,

equilibrium good prices and wages in this recession do not adjust sufficiently, and the mon-

etary policy through its Taylor rule does not lower sufficiently the real rate to undo those

effects. Equilibrium markups in the good and labor markets rise, leading to a demand driven

recession. In the absence of those rigidities, the typical Barro-King logic would prevail and

labor and consumption would counterfactually move in opposite directions.

Second, what about aggregate investment? A pure precautionary saving effect would

typically imply that aggregate investment would increase, as that is the equilibrium channel
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through which savings occurs.14 The key here is that an increase in aggregate uncertainty

over TFP also decreases the uncertainty-adjusted return on investing in capital. This caution

is formalized in our model as agents evaluate the future under the worst-case conditional

belief for TFP. As a result of this worry, there is now also an intertemporal substitution away

from capital. Another ’wedge’ now simultaneously appears in households portfolio choice,

making the uncertain capital particularly less attractive than the risk-free bond. As a result,

there is a strong economic force that lowers the incentive to invest in physical capital. Put

together, consumption, labor and investment significantly and persistently fall.

We note that this strong positive comovement of major aggregates is accompanied by

two other dynamics that the data favors in its quantitative estimation. One is nominal price

dynamics and arises from the property that higher aggregate uncertainty also affects firms’

decisions. Of particular importance is the effect on goods price-setting, in the Phillips curve

in equation (27). On the one hand, a standard cost channel is at work: on impact, due to the

lower household demand, marginal cost falls and pushes those firms who can adjust to lower

prices. On the other hand, higher aggregate uncertainty also manifests as a novel wedge in

the Phillips curve, since ambiguity shows up in the stochastic discount factor relevant for

firms’ intertemporal decisions (see the discussion in section 2.4). In particular, through the

as if risk neutral owner’s worst-case belief of low future aggregate TFP, firms now worry that

future equilibrium marginal costs will be higher. Due to nominal rigidities, firms that have

an ability to reset prices anticipate that not increasing current prices would thus lead them

exposed to sub-optimally low future markups. Therefore, this anticipation is a force that

incentivizes firms to raise current prices. This precautionary effect is important in explaining

the relatively small movements of inflation in an otherwise deep recession generated by the

shock. As such, the ambiguity shock generates dynamics that speak to the challenge put

forward by Angeletos et al. (2020) of having models of demand-driven business cycle that

are consistent with stable inflation.

Second, a key important effect following an aggregate uncertainty shock is an ex-post

capital premium, defined in equation equation (16), which is persistently positive in this

recession. The premium indicates that capital, an uncertain and illiquid asset, requires a

higher equilibrium excess return compared to the risk-free and liquid asset.15

Decomposing the response of the capital premium

Figure 4 decomposes the sources underlying the predictability of a positive premium in

14For this reason, in standard NK models, discount factor shocks, while typically leading to comovement
between labor and consumption, do not simultaneously generate comovement with investment.

15The premium is on impact negative because of the surprise embedded in the ambiguity shock, which
lowers dividends and the price of capital. After impact, the the premium is systematically positive.
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response to the aggregate uncertainty shock. The solid lines in both panels plot the realized

premium of the Figure 3 starting from the first period after the ambiguity shock. First, Panel

(a) shows that over the first few quarters the predictably higher premium primarily comes

from an increase in the capital return (dot-dashed blue line). The latter then stabilizes and

the persistent fall in the real rate (dashed purple line) eventually accounts for the persistently

higher capital premium. This decomposition, favored by the data in our Bayesian estimation,

is further consistent with stylized facts documented in the asset pricing literature emphasizing

not only that excess returns are predictable but that this predictability does not just reflect

real rate movements (eg. Cochrane (2011), Bianchi et al. (2018)).

Capital is both illiquid and uncertain. To understand the role of these two features in

driving the premium response, recall that the IRF plots the premium as recovered by an

econometrician belief, which measures realizations ex-post under the belief Et. We can then

leverage the linearity of the solution method to simply decompose the premium as

EtPremt+1 = E∗t Premt+1︸ ︷︷ ︸
liquidity

part

+EtPremt+1 − E∗t Premt+1︸ ︷︷ ︸
uncertainty

part

(43)

The liquidity part is the equilibrium compensation required to hold capital as an illiquid

asset under the worst-case belief E∗t , which is used in equilibrium in pricing assets. In the

absence of a illiquidity friction, the expected premium under E∗t would be zero in the impulse

response, since the model is linearized. The uncertainty part is formally the result of the

change of measure (i.e. a ’wedge’) from the econometrician belief Et, to the worst-case belief

E∗t . This part reflects the compensation in our linearized model for holding capital as an

asset that is exposed to aggregate uncertainty. This ambiguity component would in turn

be absent under Rational Expectations, as the econometrician and agents’ worst-case belief

would be assumed to coincide.16

Panel (b) of Figure 4 plots the decomposition of the premium in equation (43) in re-

sponse to the aggregate uncertainty shock into the liquidity (the dot-dashed blue line) and

uncertainty part (the dashed purple line). The model implies that in the short-run the main

component is the compensation for trading frictions. Suddenly faced with higher aggregate

uncertainty, the capital owners look to aggressively sell capital and shift away from its illiq-

uidity property. This effect therefore arises from a strong interaction between the HANK

friction and uncertainty. After a few quarters, this frictional component subsides and the

capital premium becomes mainly a reflection of the compensation for aggregate uncertainty.

16See Ilut and Schneider (2014) and Bianchi et al. (2018) for details of this argument in the context of
representative agent models. For a model with liquidity and ambiguity premia see also Ilut et al. (2022).
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(a) Return Decomposition (b) Mechanism Decomposition

Figure 4: Decomposing the response of capital premium following an increase in ambiguity

Comparing the response to ambiguity in HANK vs RANK

We can further evaluate the role of HANK frictions through the comparison in Figure

(3) between our baseline HANK model and the counterfactual RANK. Following an increase

in aggregate uncertainty, the presence of the illiquidity friction in the HANK model acts to

amplify the households’ incentive to move away from capital compared to the RANK version.

The mechanism has to do with the effective marginal investor in capital being different in

the two economies. In particular, the rich households in the HANK model have relatively

less labor income while holding most of the capital and thus driving most of the investment

dynamics compared to a representative agent. Faced with more aggregate uncertainty about

TFP, the rich agents in the HANK model look to sell capital and shift their portfolio more

towards the liquid asset. This shift and the higher demand for the liquid government debt

is met in equilibrium by the increase in the supply of debt following the countercyclical

government debt and fiscal transfers. Instead, the counterfactual representative agent worries

relatively more about labor income, a larger share of her future income in that case. She thus

experiences a stronger precautionary savings demand which gets channeled in the RANK

model more towards investment in capital.

Thus, compared to its counterfactual RANK version, an increase in ambiguity interacts

with the illiquidity friction to lower significantly more investment and the price of capital,

leading to a capital premium that is larger and more persistent. Beyond the IRF, using a

theoretical variance decomposition at business cycle frequency (following Uhlig (2001)), we

can further establish that in our baseline HANK model the ambiguity shock accounts for

about 90% of the model-implied variation in investment, compared to 50% in RANK. The

implications for the premium are also significantly different in HANK vs RANK. In Figure
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3 the premium is essentially not moving in the RANK version. The ambiguity shock is the

main model driver of premium in HANK, accounting for about 70% of the model-implied

total variation. In contrast, in RANK this share is less than 10%.

Importantly, the capital premium in the counterfactual RANK is not only less volatile,

but we report that is also significantly smaller on average, at only 0.11%. Since the trading

friction does not operate in this counterfactual, its premium is entirely a compensation

for ambiguity. Earlier in Section 3.3 we discuss how the total ergodic premium in our

baseline model is 5.55%, and that 3.21% can be decomposed as an ambiguity premium. The

latter is thus more than an order of magnitude larger than its RANK counterpart. This

difference showcases again that the same amount of ambiguity interacts with the HANK

side of the model to dramatically increase the uncertainty compensation required by the

marginal investor in our model.

Turning to consumption dynamics, these are also different across the two model versions.

First, in the HANK model consumption falls by less on impact. This occurs for two reasons.

On the one hand, as discussed earlier, there is relatively less precautionary savings demand

than in the RANK model. On the other hand, the estimated fiscal policy is characterized by

countercyclical lump-sum transfers. While these transfers have no effect in RANK due to its

Ricardian equivalence nature, they help prop up consumption in the otherwise deep recession

of the HANK model. Second, the consumption dynamic path features a hump-shape in our

baseline. This stands in contrast to the monotonic mean-reversion from below in the RANK

model, typical in models that lack habit-formation in consumption, like in ours. The hump

shape in our baseline reflects the short-lived support from the countercyclical fiscal transfers

in not letting consumption fall much on impact.

Counterfactual response to ambiguity: less illiquidity friction

To further diagnose mechanisms we now report results from a series of counterfactual

experiments. Figure 5 plots in the red dot-dashed line a version where, keeping all the other

parameters fixed as in the baseline, we weaken the illiquidity friction, by increasing the

probability of trading the illiquid asset to λ = 25%. Through this weakening of the trading

friction, the resulting counterfactual model starts to resemble a one-asset HANK model.

We see three important effects in this counterfactual case compared to the baseline.

First, consumption dynamics are very similar, indicating that the incomplete risk-sharing

property of the model matters much more for consumption than the illiquidity friction.

Second, investment falls by about 40% less than it does in the baseline. Third, the price of

capital falls similarly by less and the premium is less volatile. Both of these latter effects

confirm the key interaction between ambiguity and the illiquidity friction characterizing our

model’s mechanism. When capital is less illiquid, its owners feel less of an urgency to shift
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Figure 5: Model counterfactuals

away from it when aggregate uncertainty increases. As a result, the fall in investment and

price of capital is significantly less dramatic than in the baseline.

Counterfactual response to ambiguity: No effects through the Phillips Curves

We can further diagnose mechanisms through counterfactuals where some decisions do

not react to ambiguity. In particular, we can consider model versions where in steady-state

all agents use the same worst-case belief but away from it, some decision-makers may not

respond to time-varying ambiguity.

For example, an important property of our model discussed for the IRF in Figure 3 is

that aggregate uncertainty matters for price setting through the expected inflation formed

under the worst-case belief in the Phillips Curve of equation (27). We can turn that effect

off by leveraging the linearity of our solution method since

Etπ̂t+1 = E∗t π̂t+1 + επzat (44)

Computing the conditional expected inflation under the econometrician’s belief means un-

doing the effect of the current worst-case belief about future TFP (µ∗t = −at) over future

41



inflation, which occurs through επz, the original equilibrium elasticity of inflation with re-

spect to TFP. We can then compute a counterfactual economy where all forward-looking

decisions are done under the worst-case belief except price-setting, where the expected in-

flation in equation (27) is now given by Etπ̂t+1. A similar approach as in equation (44) can

turn off the effects of ambiguity on the nominal wage setting.

The blue dashed line of Figure 5 plots a counterfactual where we use this approach to turn

off the effects of ambiguity in the Phillips curves for both price and wage setting. The key

effect is that now the recession caused by the ambiguity increase is milder. The reason is that

in contrast to the baseline version, in this counterfactual firms and unions now do not exhibit

precautionary price-setting as they do not worry about future marginal costs being high.

Therefore compared to the baseline, they set lower goods prices and nominal wages, leading to

relatively higher demand for goods and employment. Thus, output, employment, investment

and price of capital fall significantly less than the baseline. In fact, consumption even rises,

still stimulated by the countercyclical fiscal transfers. Notably, inflation in this counterfactual

is similar to the baseline despite the recession being much milder. Put differently, in our

baseline model we obtain a deep recession without a correspondingly major deflation, since

there firms do worry about high future marginal costs.

Impulse response to the Idiosyncratic risk shock

We now discuss more briefly the impulse responses for the rest of the shocks in our

baseline model. In particular, another source of time-varying uncertainty shock in the model

is the idiosyncratic income risk, i.e. an innovation εσt to the conditional volatility of labor

income in equation (14). Figure (6) plots the IRF to an increase in this risk. While in the

counterfactual RANK model this shock would have clearly no effects, in the HANK model the

increase in risk leads to a fall in consumption, labor and investment. However, these effects

are short-lived and moreover aggregate investment over-shoots soon after impact, by slowly

returns to steady state from above.17 Intuitively, this shock acts as a precautionary-savings

inducing disturbance, leading on impact to a reduction in consumption, and through nominal

rigidities to a demand-driven recession with lower employment and aggregate investment.

In that regards it resembles the precautionary saving property of the aggregate uncertainty

increase as well, per the discussion around Figure 3.

A key contrast to the aggregate uncertainty increase is that the latter also implies a

reduction on the uncertainty-adjusted return to capital, while the idiosyncratic uncertainty

operates entirely through worries over labor income. That reduction in the perceived re-

turn on capital pushed down significantly and persistently the desire to investment in the

17This type of down-and-up dynamic also resembles the IRF characterizing the rational expectations
HANK model in Bayer et al. (2024).

42



Figure 6: Impulse Responses to an Idiosyncratic income risk shock in estimated HANK
model and counterfactual RANK (under the same parameters)

uncertain capital, a force that is absent here. Altogether, in contrast to the response to

aggregate uncertainty, the short-lived recessionary effects and over-shooting response to the

idiosyncratic income risk shock does not make it a promising source of systematic business

cycle fluctuations. This is reflected in the historical decomposition of Figure 2, where risk

shocks play a small role.

The other shocks

We conclude the discussion of the model’s response to shocks with a brief comment on

the IRFS to the remaining shocks. These responses are consistent with standard findings in

typical estimated NK models, and thus for brevity we relegate to the Appendix.

Aggregate TFP shocks are not a sufficiently promising source of business cycles, for the

standard reason of failing to generate in a quantitative NK model positive comovement

between consumption, investment and hours. In particular, employment falls following a

positive aggregate TFP shock (see Figure 7 in Appendix). The reason, in contrast to a typical

response characterizing its RBC version, is standard in this class of models - it appears due
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to nominal rigidities, as price and wage markups become endogenously countercyclical.18

Finally, consider the responses to nominal shocks. A contractionary monetary policy

shock induces a higher real rate, dampening demand for consumption and investment and

leading to a relatively short recession with lower employment and persistently low inflation

(see Figure 8 in the Appendix). Finally, an increase in the inflation target lowers the real

rate and produces a boom but one that is accompanied by a large and persistent increase in

inflation (see Figure 9 in the Appendix). Quantitatively, as indicated earlier in the historical

decomposition, the main role played by these nominal shocks is to improve the empirical fit

of the model on the nominal side.
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Appendix

A Some details on the household side

The household’s felicity function u exhibits a constant relative risk aversion (CRRA) with

risk aversion parameter ξ,

u(xit) =
x1−ξ
it − 1

1− ξ
, (45)

where xit = cit − G(hit, nit) is household i’s composite demand for goods consumption cit

and leisure and G measures the disutility from work.

Assuming a proportional income-tax, a household’s net labor income, yit, is given by

yit = (1− τ)(wthitnit), (46)

where wt is the aggregate real wage rate and τ the tax rate. Given net labor income, the

first-order condition for labor supply is

∂G(hit, nit)

∂nit
= (1− τ)(wthit). (47)

Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with γ > 0,

we can simplify the expression for the composite consumption good, xit, making use of this

first-order condition (47), and substitute G(hit, nit) out of the individual planning problem

xit = cit −G(hit, nit) = cit −
(1− τ)wthitnit

1 + γ
. (48)

When the Frisch elasticity of labor supply is constant and the tax schedule has the form (46),

the disutility of labor is always a fraction of labor income and constant across households.

Therefore, in both the household’s budget constraint and felicity function, only after-tax

income enters and neither hours worked nor productivity appear separately.

This implies that we can assume G(hit, nit) = hit
n1+γ
it

1+γ
without further loss of generality as

long as we treat the empirical distribution of income as a calibration target. This functional

form simplifies the household problem as hit drops out from the first-order condition and

all households supply the same number of hours nit = N(wt). Total effective labor input,∫
nithitdi, is hence also equal to N(wt) because

∫
hitdi = 1.
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B Data and Estimation

B.1 Data: Sources and transformations

B.1.1 Data for moment-matching

The following list contains the data sources for the average data ratios we target in the

calibration of the ergodic distribution. Unless otherwise noted, all series are available from

1985 to 2019 from the St.Louis FED - FRED database (mnemonics in parentheses).

Mean illiquid assets. Private fixed assets (K1PTOTL1ES000) over quarterly GDP (ex-

cluding net exports; see below), averaged over 1985 – 2019.

Mean government debt. Gross federal debt held by the public as percent of GDP

(FYPUGDA188S), averaged over 1985 – 2019.

Average top 10 share of wealth. Source is the World Inequality Database (2023),

averaged over 1985 – 2019.

B.1.2 Data for estimation

Formally, the vector of observable variables is given by:

OBSt =



∆ log (Ct)

∆ log (It)

∆ log (Nt)

log
(
Rb
t

)
log (πt)

log (Premt)


−



∆ log (Ct)

∆ log (It)

∆ log (Nt)

log
(
Rb
t

)
log (πt)

0.0


where ∆ denotes the temporal difference operator and bars above variables denote time-series

averages.

Unless otherwise noted, all series are available at quarterly frequency from 1985Q1 to

2019Q4 from the St.Louis FED - FRED database (mnemonics in parentheses).

Consumption, Ct. Sum of personal consumption expenditures for nondurable goods

(PCND), durable goods (PCDG), and services (PCESV) divided by the GDP deflator

(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Investment, It. Gross private domestic investment (GPDI) divided by the GDP deflator

(GDPDEF) and the civilian noninstitutional population (CNP16OV).
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Hours worked, Nt. Nonfarm business hours worked (HOANBS) divided by the civilian

noninstitutional population (CNP16OV).

Inflation, πt. Computed as the log-difference of the GDP deflator (GDPDEF).

Nominal interest rate, Rb
t . Quarterly average of the effective federal funds rate

(FEDFUNDS). From 2009Q1 to 2015Q4, we use the Wu and Xia (2016) shadow federal

funds rate.

Capital Premium, PREMt. We take the estimated time series for after-tax returns to

all capital from Gomme et al. (2011) and substract the real yield on long-term U.S.

government securities (LTGOVTBD) until June 2000 and 20-Year Treasury Constant

Maturity Rate (GS20) afterwards (see Krishnamurthy and Vissing-Jorgensen, 2012).

Available from 1985Q1 to 2019Q4.

B.2 MCMC diagnostics

We estimate the model using a single RWMH chain after an extensive mode search. After

burn-in, 150,000 draws from the posterior distribution are used to compute the posterior

statistics. The acceptance rate is close to 30%. We check Geweke (1992) convergence statis-

tics for individual parameters as well as traceplots. Geweke (1992) tests the equality of means

of the first 10% of draws and the last 50% of draws (after burn-in). If the samples are drawn

from the stationary distribution of the chain, the two means are equal and Geweke’s statis-

tic has an asymptotically standard normal distribution. Taking the evidence from Geweke

(1992) and the traceplotss together, we conclude that our RWMH chain has converged. No

individual Geweke test rejects at the one percent level and only a small number reject at the

five percent level, which can be expected from the multiple-testing nature of the exercise.
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C Supplementary Figures

Impulse Responses to TFP shock in estimated HANK model and counterfactual RANK
(under the same parameters).

Figure 7: Impulse Responses to TFP

52



Impulse Responses to a monetary shock in estimated HANK model and counterfactual
RANK (under the same parameters).

Figure 8: Impulse Responses to Monetary Policy

53



Impulse Responses to an inflation target shock in estimated HANK model and counterfactual
RANK (under the same parameters).

Figure 9: Impulse Responses to Inflation Target
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